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El espacio de los estados cuánticos en el campo de la computación cuántica puede ser
representado por vectores en un espacio de Hilbert o por matrices de densidad. Selinger
y Valiron definieron λq en 2005, una extensión cuántica del cálculo lambda que utiliza
vectores para representar el estado cuántico y sigue el paradigma de datos cuánticos /
control clásico.

El cálculo λρ introducido por Dı́az-Caro en 2017, en cambio, describe los estados
cuánticos utilizando matrices de densidad. Estas matrices proporcionan una forma de
representar estados cuánticos mixtos. Una modificación de este cálculo llamada λoρ ex-
tiende λρ mediante la adición de sumas algebraicas de términos para representar una
generalización de las matrices de densidad.

En este trabajo analizamos la relación entre los cálculos definiendo una traducción de
λρ a λq y su inversa. Usando la traducción probamos la normalización fuerte de λρ. Luego
demostramos que las matrices de densidad generalizadas en el cálculo λoρ son equivalentes
a una elección no-determinista entre términos en λρ y definimos una simulación completa
de λoρ en λq.

Palabras claves: Cálculo lambda, computación cuántica, matrices de densidad, control
clásico.





The space of quantum states in the field of quantum computing can be represented with
vectors in a Hilbert space, or with density matrices. Selinger and Valiron defined λq in
2005, a quantum extension to the lambda calculus using vectors to represent the quantum
states and following the quantum data / classical control paradigm.

The λρ calculus introduced by Diaz-Caro in 2017, on the other hand, describes quantum
states using density matrices. These matrices provide a way to represent mixed quantum
states. A modification of this calculus called λoρ extends λρ by adding algebraic sums of
terms to represent a generalization of density matrices.

In this thesis we analyze the relationship between the calculi by defining a translation
from λρ to λq and its left-inverse. Using the translation we prove the strong normalization
of λρ. We then show that the generalized density matrices in the λoρ calculus are equivalent
to non-deterministic choices between terms in λρ and define a complete simulation of λoρ
into λq.

Keywords: Lambda calculus, quantum computing, density matrices, classical control.





Agradecimientos

A toda mi familia, y especialmente a mis padres/viejos, que estuvieron conmigo durante
todo el camino.

A mis amigos, por bancarme aún cuando desaparezca entre exámenes y TPs.
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Introduction

In the last decade there has been an abundance of research around quantum extensions
to the lambda calculus, e.g. [vT04, SV05, PSV14, Zor16, AD17, ADCV17, DCD17]. In all
these works, the chosen language used to represent the quantum state has been vectors
in a Hilbert space. However, there exists an alternate formulation for quantum mechanics
using density matrices. The density matrices provide a way to describe a mixed-state
quantum system; that is, a probabilistic set of several possible states. All of the quan-
tum mechanics postulates can be described through such formalism, and therefore all of
quantum computing can also be described through it.

[Sel04] introduced a language for quantum flow charts, and an interpretation of this
language into a density matrix CPO1. After his work, the density matrix language has
been widely used in quantum programming languages, e.g. [DP06, FDY11, Yin11, FYY13,
YYW17]. Moreover, the “Foundations of Quantum Programming” book [Yin16] is entirely
written in the language of density matrices. However, to our knowledge, the only lambda
calculus using density matrices is the one introduced in [DC17].

In addition to the distinction of languages based on how they handle quantum states
(vectors in a Hilbert space v.s. density matrices), we can also differentiate them by how
they consider the control, which can be quantum or classical.

The concept of quantum data / classical control states that the quantum computer
runs in a specialized device attached to a classic computer, and that the classical computer
instructs the quantum computer on which operations to perform and reads the result after
measurements. Many studies have been developed following this paradigm, e.g. [AG05,
SV05, GLR+13, PSV14, Zor16]. The idea of having a quantum language where control is
classical and data is quantum was described in Knill’s QRAM model [Kni96] in 1996. This
inspired Selinger’s work on quantum programming languages [Sel04], which later induced
the creation of a quantum lambda calculus in this paradigm [SV05]. This calculus was
the basis for building Quipper [GLR+13], a scalable programming language embedded in
Haskell.

Dual to the paradigm of quantum data / classical control, there is the paradigm of
quantum control and data. The idea is to provide a computational definition of the
notion of vector space and bilinear functions. Quantum control is also commonly used in
the area of quantum walks, e.g. [ABN+01, AAKV01]. There are also several high level
languages with quantum control, e.g. [AG05, YYF12, YYF14, BP15]. A lambda calculus
with quantum control was recently introduced in [DCGMV19] following a long line of work
in that direction [ADC12, DCP12, ADCP+14, AD17, ADCV17].

In [DC17] a quantum extension to the lambda calculus, called λρ, is proposed in
the quantum data / classical control paradigm, where quantum data are represented by

1Complete partial order.
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density matrices. Then, in the same work, a modification of this calculus is introduced,
called λoρ, in which the density matrices are generalized to the classical control: that is,
after a measurement, all possible results are taken in a kind of generalized density matrix
of programs. The control is not quantum, since it is not possible to superpose programs.
However, when considering the density matrix of the mixed state of programs produced
by a measurement, the control is not classic either. This new paradigm can be identified
as weak quantum control. Thus, λρ and λoρ become the first quantum calculi to weakly
relate the two paradigms.

In this thesis we propose a translation between λρ and the highly developed quantum
calculus λq, introduced by Selinger and Valiron in [SV05], and define a left-inverse. We also
take advantage of it to prove strong normalization in λρ. We then define a a translation
from λoρ to λρ, showing that the weak quantum control can be modelled by the classical
control. The composition of both translations results in a simulation of the λoρ calculus in
λq.

The purpose of this work is then to show that the calculi λρ and λoρ are equivalent to
the Selinger-Valiron calculus.

The remainder of this work has the following structure:

� In Chapter 1, we go over the preliminary concepts used through this document. We
give a swift introduction to quantum mechanics and define the simply typed lambda
calculus.

� In Chapter 2, we introduce the quantum extensions to the lambda calculus λρ, λ
o
ρ,

and λq.

� In Chapter 3, we define the translations between the calculi, and prove their sound-
ness.

� In Chapter 4, we end with a discussion of our results and a proof of strong normal-
ization for λρ.



Chapter 1

Preliminaries

1.1 Notation

As usual, N, N0, R and C denote the natural numbers, natural numbers including zero,
real numbers, and complex numbers, respectively.

We use the Dirac notation to represent unitary vectors in the Hilbert space C2. The
vectors ( 1

0 ) and ( 0
1 ) composing the canonical basis are denoted with the kets |0〉 and |1〉

respectively. Another commonly referenced vectors are |+〉 = 1√
2
( 1

1 ) and |−〉 = 1√
2

(
1
−1

)
.

A bra represents the Hermitian conjugate of a ket, also denoted with a †, 〈φ| = |φ〉†.
Notice that 〈φ | ψ〉 corresponds to the inner product between the vectors |φ〉 and |ψ〉 and
|φ〉〈ψ| corresponds to the outer product. Two vectors |φ〉 and |ψ〉 in the Hilbert spaces V
and W may be combined into a vector |φψ〉 in a third space V ⊗W by the tensor product
|φψ〉 = |φ〉 ⊗ |ψ〉.

1.2 Quantum computing

We shall not give a thorough description of quantum computing in this document. There
have been a number of great books published about it, e.g. [NC10, KLM07, Mer07].
However, we will briefly review the basis of the theory.

A classical computer operates by applying discrete transformations to an evolving bit
state. At any point in time, this state can be described deterministically with the binary
valuation for each bit. We can measure this state without modifying it, and overwrite it
with any values we desire.

A quantum computer is a whole different story, as we shall see in this section.

1.2.1 Quantum state

The state of a quantum computer is composed by units called quantum bits, or qubits for
short. As with classical bits, which can be in either the state 0 or 1, qubits may be in two
states we call |0〉 and |1〉. But the qubits can also be in any complex linear combination
or superposition |φ〉 = α |0〉+ β |1〉 where α, β ∈ C and |α|2 + |β|2 = 1. Thus, a qubit is a
vector in the Hilbert space C2.

An ensemble of n qubits can be represented by a normalized vector in the Hilbert
space C2n =

⊗n
i=1 C2. The canonical basis of this space is described by the combination

1



2 CHAPTER 1. PRELIMINARIES

of the basis vectors for each qubit. For n = 2, this corresponds to {|00〉 , |01〉 , |10〉 , |11〉}.
We use ||ψ〉| to denote the number of qubits in a state |ψ〉.

Some quantum states in a composed state cannot be written as the tensor product
between states of each individual qubit. For example, the Bell state

β00 =
|00〉+ |11〉√

2
.

The qubits in this state are said to be entangled.

Evolution

The evolution of a closed quantum system, a system that does not interact with an external
physical system, can be described as a succession of discrete steps as unitary operators,
matrices U ∈ Cn such that U †U = I. An operator in C2n is also called an n-ary quantum
gate, since it operates over a state of n qubits. By definition, this operation is always
invertible.

Example 1.2.1 The Hadamard gate is a single-qubit unitary operator that maps the states
|0〉 and |1〉 to |+〉 and |−〉 respectively. It is defined as follows:

H =
1√
2

[
1 1
1 −1

]

Example 1.2.2 Another commonly referenced gate is the binary CNOT, or controlled
NOT gate. It performs a NOT operation on the second qubit only when the first qubit is
in the state |1〉, and leaves it unchanged otherwise.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Remark 1.2.3 An important consequence of this definition is the no-cloning theorem.

Suppose that we had a state |s〉 and some unitary operator U that was able to copy two
particular states φ and ψ:

U |φs〉 = |φφ〉
U |ψs〉 = |ψψ〉

Then 〈Uφs | Uψs〉 = 〈φφ | ψψ〉 = (〈φ | ψ〉)2. But, on the other hand, 〈Uφs | Uψs〉 =
〈φs | ψs〉 = 〈φ | ψ〉. Then, we have (〈φ | ψ〉)2 = 〈φ | ψ〉. That is, φ and ψ are either equal
or orthogonal. Therefore a cloning unitary operator can only clone orthogonal quantum
states, there is no universal cloning machine.

Formally, there is no quantum gate U and quantum state |φ〉 ∈ Cn such that for any
|ψ〉 ∈ Cn, U |ψφ〉 = |ψψ〉.
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Measurement

The other way a quantum state may evolve is through interaction with an external physical
system. This process is called a measurement. The external observer is able to obtain some
information from the actual state of the quantum system, while inevitably disturbing it.

The measurement is described as a collection of measurement operators {Mi}mi=1 sat-

isfying the property
∑m

i=1M
†
iMi = I.

When the measurement is performed over a state |ψ〉, a single operator is chosen
randomly with probability:

pi = 〈ψ|M †iMi |ψ〉

The index k of the chosen operator Mk is called the result of the measurement, and is
known by the external observer. This process collapses the system into a new state |ψ′〉:

|ψ′〉 =
Mk |ψ〉√
〈ψ|M †kMk |ψ〉

Notice that this operation is idempotent. If a measurement is performed over a quantum
state, further measurements using the same set of measurement operators will always yield
the same result.

A single collection of measurement operators suffices to perform any desired measure-
ment when combined with a unitary operator. Through this document we use the set of
operators derived from the canonical basis,

{|0 . . . 00〉〈0 . . . 00| , |0 . . . 01〉〈0 . . . 01| , . . . , |1 . . . 11〉〈1 . . . 11|}.

We write a measurement operation of a state |ψ〉 over the canonical basis as π |ψ〉.

Example 1.2.4 Consider a measurement operation of the state |+〉 = 1√
2
|0〉+ 1√

2
|1〉 over

the canonical basis, π |+〉. The associated measurement operators are:

M0 = |0〉〈0| M1 = |1〉〈1|

The probabilities for the measurement operators are:

p0 = 〈+|M †0M0 |+〉 =
1

2
p1 = 〈+|M †1M1 |+〉 =

1

2

And the possible final states are:

|ψ′0〉 =
M0 |+〉√

〈+|M †0M0 |+〉
= |0〉 |ψ′1〉 =

M1 |+〉√
〈+|M †1M1 |+〉

= |1〉

Quantum postulates

The given definitions of a quantum system are independent from the specific physical
system used by the quantum computer. The properties of the qubit and its behaviour are
based on a set of quantum postulates that let us abstract over the hardware implementation
of the quantum computer when constructing the theory around it.

The previous notions follow the four postulates of quantum mechanics, as defined in
[NC10]:
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Postulate 1: Associated to any isolated physical system is a complex vector
space with inner product (that is, a Hilbert space) known as the state space of
the system. The system is completely described by its state vector, which is a
unit vector in the system’s state space.

The first postulate does not define the specific Hilbert space to be used. For the states
presented in this section we chose the commonly used C2n spaces. In Subsection 1.2.2 we
define an alternate realization of the postulates using density matrices.

Postulate 2: The evolution of a closed quantum system is described by a unitary
transformation. That is, the state |ψ〉 of the system at time t1 is related to the
state |ψ′〉 of the system at time t2 by a unitary operator U which depends only
on the times t1 and t2, |ψ′〉 = U |ψ〉.

Postulate 3: Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state space of the sys-
tem being measured. The index m refers to the measurement outcomes that may
occur in the experiment. If the state of the quantum system is |ψ〉 immediately
before the measurement, then the probability that result m occurs is given by

pm = 〈ψ|M †mMm |ψ〉

and the state of the system after the measurement is

Mm |ψ〉√
〈ψ|M †mMm |ψ〉

.

The measurement operators satisfy the completeness equation,∑
m

M †mMm = I.

The completeness equation expresses the fact that probabilities sum to one:

1 =
∑
m

pm =
∑
m

〈ψ|M †mMm |ψ〉 .

Postulate 4: The state space of a composite physical system is the tensor
product of the state spaces of the component physical systems. Moreover, if we
have systems numbered 1 through n, and system number i is prepared in the
state |ψi〉, then the joint state of the total system is |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉.

1.2.2 Density matrices

In the previous Subsection we formulated quantum mechanics based on vectors in a com-
plex Hilbert space, but the first postulate of quantum mechanics also allows for an alter-
native definition using density operators (or density matrices).

Suppose we have a quantum system that might be in a number of states |ψi〉 with
probability pi. An ensemble of quantum bits is a set {pi, |ψi〉}i, with

∑
i pi = 1. The

density operator for this state is defined as

ρ =
∑
i

pi |ψi〉〈ψi|
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This matrix is Hermitian, positive-semidefinite, and has trace one.

If a density matrix can be decomposed into a single state |ψ〉 such that ρ = |ψ〉〈ψ|
we call it a pure-state density matrix. This is equivalent to asking for the square of the
matrix to have trace one, tr(ρ2) = 1. If a density matrix is not in a pure state we say it
corresponds to a mixed state.

Example 1.2.5 The pure density matrix corresponding to the state |+〉 can be written as:

ρ = |+〉〈+| =
[

1/2 1/2
1/2 1/2

]
Example 1.2.6 We can write the mixed state density matrix with no information about
the state, starting from the ensemble {(1

2 , |0〉), (
1
2 , |1〉)}. That is, a state where each posible

state in a basis has the same probability,

ρ =
1

2
|0〉〈0|+ 1

2
|1〉〈1| =

[
1/2 0
0 1/2

]
.

Notice that any other ensemble of basis vectors with equal probabilities yields the same
density matrix,

ρ′ =
1

2
|+〉〈+|+ 1

2
|−〉〈−| =

[
1/2 0
0 1/2

]
.

The equivalence corresponds to the fact that both states are physically indistinguishable
from each other.

Quantum postulates reformulation

The postulates of quantum mechanics can then be reformulated to use density matrices,
as defined in [NC10]:

Postulate 1: Associated to any isolated physical system is a complex vector
space with inner product (that is, a Hilbert space) known as the state space of
the system. The system is completely described by its density operator, which is
a positive operator ρ with trace one, acting on the state space of the system. If a
quantum system is in the state ρi with probability pi, then the density operator
for the system is

∑
i piρi.

Postulate 2: The evolution of a closed quantum system is described by a unitary
transformation. That is, the state ρ of the system at time t1 is related to the
state ρ′ of the system at time t2 by a unitary operator U which depends only on
the times t1 and t2, ρ′ = UρU †.

Postulate 3: Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state space of the
system being measured. The index m refers to the measurement outcomes that
may occur in the experiment. If the state of the quantum system is ρ immediately
before the measurement, then the probability that result m occurs is given by

pm = tr(M †mMmρ)
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and the state of the system after the measurement is

MmρM
†
m

tr(M †mMmρ)
.

The measurement operators satisfy the completeness equation,∑
m

M †mMm = I.

Postulate 4: The state space of a composite physical system is the tensor
product of the state spaces of the component physical systems. Moreover, if we
have systems numbered 1 through n, and system number i is prepared in the
state |ψi〉, then the joint state of the total system is ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn.

The reduced density operator

The density operator can be used to describe subsystems of a composite quantum system,
via what is called the reduced density operator. If two quantum systems A and B are
composed into a single system A⊗B and its state can be described by the density matrix
ρAB, then the reduced density operator for system A is defined as

ρA = trB(ρAB),

where trB is the partial trace over the system B. We later use this operation when defining
a method for finding pure states containing a given mixed state, in Section 3.1.

Example 1.2.7 Let A = B = C2 and let ρ ∈ A ⊗ B be the pure state density matrix
corresponding to the Bell state β00,

ρ = β†00β00 =
|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|

2
=


1/2 0 0 1/2
0 0 0 0
0 0 0 0

1/2 0 0 1/2


Now, consider the reduced density operator for system A,

ρ′ = trB(ρ) =

[
1/2 0
0 1/2

]
=
|0〉〈0|+ |1〉〈1|

2

It corresponds to the no-information mixed state density matrix described in Example 1.2.6.

1.2.3 Models of computation

There have been two main paradigms related to how a quantum computer would handle
the control and data flow in a program.

The classical control-quantum data paradigm, attributed to Knill [Kni96], proposes
that a quantum computer would be based on a classical machine with an attached quantum
device. The flow of the program would be controlled by the classical part, and the quantum
coprocessor would maintain an internal quantum state and allow for quantum operations
to be run on it, returning the result of any measurement.
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The quantum control-quantum data counterpart proposes a machine where the flow of
the program is directly controlled by the quantum state, allowing for different branches of
the program to be executed in superposition. This control paradigm is commonly used in
the field of quantum walks.

The lambda calculi introduced in Sections 2.1 and 2.2 are based on the classical control
paradigm. In Section 2.3 we introduce a third calculus that considers outcomes of a
measurement in a kind of generalized density matrix of arbitrary terms. We call this
type of control probabilistic control, or weak quantum control, since it does not allow
superpositions of terms.

1.3 The simply typed lambda calculus

The lambda calculus was introduced by Alonzo Church in the 1930s [Chu36] as a formal-
ization of computable functions. Church later defined a typed interpretation in [Chu40]
called simply typed λ-calculus. In this section we introduce the general notions of the
simply typed λ-calculus, and some other definitions to be used through this document.

The set of terms Λ in the simply typed λ-calculus are defined recursively as follows:

t ::= x | t t | λx.t

where x is a variable from an infinite denumerable set V.

An occurrence of a variable x is said to be bound in t if appears in a subterm λx.t′. If
the variable is not bound, it is called a free variable of t. We write the set of free variables
of a term FV(t).

A bound variable in t may be renamed to an unused variable by α-conversion while
maintaining the meaning of the term. We consider the terms under α-equivalence and
adopt the Barendregt Convention [Bar84], which stipulates that the set of free variables
is disjoint from the set of bound variables, and that each subterm λx.t′ binds a different
variable.

The simply typed λ-calculus defines a set of reduction or rewrite rules that determines
the relation t → r, given in Table 1.1. t[r/x] represents a substitution, replacing all the
occurrences of the variable x in t by r.

(λx. t)r → t[r/x]
t→ t′

λx.t→ λx.t′
r → r′

tr → tr′
t→ t′

tr → t′r

Where t[r/x] represents the substitution of each free variable x by the term r.

Table 1.1: Rewrite system for the simply typed λ-calculus

We also define a set of value terms based on the reduction rules, which corresponds to
the terms that cannot be further reduced:

v ::= x | λx.v

For certain terms the rewrite rules allow for more than one possible reduction, as seen
in Example 1.3.1.
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Example 1.3.1 The term t = (λx.x ((λy.y)x2))x1 reduces to two different terms:

t→ x1 ((λy.y)x2) and t→ (λx.x x2)x1.

It is possible to modify the reduction rules to follow a certain reduction strategy, which
deterministically defines at most one possible reduction for each term.

A commonly used reduction strategy is called call-by-value [Plo75]. This strategy
mimics the behaviour of most imperative programming languages, in that it forces each
argument of a function to be fully evaluated before running it. A variation of this strategy,
called weak call-by-value, also disallows internal reductions inside a lambda abstraction.

In Table 1.2 we redefine the reduction rules using the weak call-by-value strategy. The
set of value terms is redefined as:

v ::= x | λx.t

(λx. t)v → t[v/x]
r → r′

tr → tr′
t→ t′

tv → t′v

Where v is a value.

Table 1.2: Rewrite system for the simply typed λ-calculus with a call-by-value strategy

The simply typed lambda calculus defines a typed interpretation of its terms. The set
of terms are defined recursively as:

A ::= α | A→ A

where α belongs to a fixed set of base types.
A typing context Γ is an unordered set of typing assumptions x : A, attributing the

type A to the term x. A typing judgement Γ ` t : A states that the term t is of type A in
the context Γ. This judgement is derived via a set of typing rules. The set of typing rules
for the simply typed λ-calculus is defined in Table 1.3. We define the domain of a typing
context as the set of variables in its typing assumptions, dom({xi : Ai}i) = {xi}i.

∆, x : A ` x : A
ax

Γ, x : A ` t : B

Γ ` λx.t : A→ B
→i

Γ ` t : A→ B ∆ ` r : A
Γ,∆ ` tr : B

→e

Table 1.3: Typing rules for the simply typed λ-calculus

A typing system may admit a number of structural rules, either explicitly defined or
as lemmas.

The weakening rule (Definition 1.3.2) allows us to ignore some typing assumptions
from the context, discarding the ones we don’t need.

The contraction rule (Definition 1.3.3) allows us to use a typing assumptions multiple
times for separate branches of the typing judgement. In practice, this lets us reference a
bound variable multiple times in a well-typed term.
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Definition 1.3.2 (Weakening)

Γ ` t : A
Γ, x : B ` t : A

weakening

Definition 1.3.3 (Contraction)

Γ, x : B, y : B ` t : A

Γ, x : B ` t[x/y] : A
contraction

Notice that the two rules can be proved as derivable in the simply typed lambda
calculus.

A typing system that admits weakening but not contraction is called affine. We use
this kind of typing system for the calculi presented in Sections 2.1, 2.2, and 2.3, since it
allows us to have variables linked to qubits, while honoring the no-cloning property.

A second kind of type system, called linear, does not admit contraction nor weakening.
That is, each variable in the context must be used exactly once.

By convention, function types in affine and linear systems are denoted with a lollipop
arrow (, instead of the traditional arrow.





Chapter 2

Quantum lambda calculi

2.1 λq, the linear quantum lambda calculus

The Selinger-Valiron quantum lambda calculus (λq) has been introduced in [SV05]. This
calculus was the first quantum extension to the lambda calculus to use the classical con-
trol/quantum data paradigm. λq was the basis on which the quantum programming
language Quipper [GLR+13] was created.

The calculus follows the idea of having a quantum state separated from the term,
where variables are used as pointers to specific qubits in the state.

In [SV08], Selinger and Valiron defined a fragment of this calculus where all the vari-
ables are linearly typed, in contrast to the original calculus that used an affine system with
an unrestricted type constructor !. They also added a non-terminating term Ω. Through
this document we use a combination of both definitions: We use the fragment without the
unrestricted type, but maintaining the weakening rule from the original affine system. We
also omit the non-terminating term. This calculus uses a call-by-name strategy.

The calculus λq extends the simply typed lambda calculus with booleans and products,
and adds specific terms to deal with a quantum register. We refer to the set of terms as
Λq, and define them as follows:

t ::= x | tt | λx. t | if t then t else t | 0 | 1 | meas | new |
U | ∗ | 〈t, t〉 | let 〈x, y〉 = t in t | let ∗ = t in t

The new term represents the process of initializing a new qubit in the quantum register
according to a boolean variable. meas, in turn, measures a single qubit from the quantum
register over the canonical base and returns the boolean result. And finally, U may be
any unitary operator that can get applied to a tuple of qubits.

The shorthand notation 〈t1, t2, . . . tn〉 is equivalent to 〈t1, 〈t2, . . . 〉〉.
Types in λq are defined as follows:

A ::= bit | qbit | A( A | > | A⊗A

We refer to the set of types as Πq. We use the notation qbit ⊗ · · · ⊗ qbit = qbitn and
bit⊗ · · · ⊗ bit = bitn.

Example 2.1.1 The following term emulates the process of flipping a fair coin and choos-
ing between two terms t and r based on the result. The unitary operator H is the Hadamard
gate as defined in Section 1.2.

if meas(H(new 0)) then t else r

11
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The typing rules for λq are defined in Table 2.1. We write c for an arbitrary constant
of the language, i.e. 0, 1, meas, new, U , or ∗. We call Ac the type of the constant c,
defined as follows:

A0 = A1 = bit Ameas = qbit( bit Anew = bit( qbit

AUn = qbitn( qbitn ∗ = >

Since the type system is affine, it admits the weakening rule (Lemma 2.1.2).

∆, x : A ` x : A
ax1

∆,` c : Ac
ax2

Γ1 ` t : bit Γ2 ` r : A Γ2 ` s : A

Γ1,Γ2 ` if t then r else s : A
if

Γ, x : A ` t : B

Γ ` λx.t : A( B
(I

Γ1 ` t : A( B Γ2 ` r : A

Γ1,Γ2 ` tr : B
(E

Γ1 ` t1 : A1 Γ2 ` t2 : A2

Γ1,Γ2 ` 〈t1, t2〉 : A1 ⊗A2

⊗I
Γ1 ` r : A1 ⊗A2 Γ2, x1 : A1, x2 : A2 ` t : A

Γ1,Γ2 ` let 〈x1, x2〉 = r in t : A
⊗E

` ? : > >I
Γ1 ` r : > Γ2 ` t : A

Γ1,Γ2 ` let ? = r in t : A
>E

Table 2.1: Typing rules for λq

Lemma 2.1.2 (Weakening) If Γ ` t : A and x 6∈ FV(t), then Γ, x : B ` t : A. �

Example 2.1.3 Given a typing context Γ such that Γ ` t : A and Γ ` r : A, we can write
the following typing derivation for the coin-flipping term from Example 2.1.1.

Let ΠH be the following derivation

` H : qbit( qbit
ax2

` new : bit( qbit
ax2 ` 0 : bit

ax2

` new 0 : qbit
(E

` H(new 0) : qbit
(E

then

` meas : qbit( bit
ax2

ΠH

` meas(H(new 0)) : bit
(E

Γ ` t : A Γ ` r : A

Γ ` if meas(H(new 0)) then t else r : A
if

2.1.1 Quantum closures

A program in λq is composed by a term where all the free variables correspond to pointers
to qubits in an external quantum state.

A program state (also called a quantum closure) is represented by a triple [Q,L,M ] ∈
Cq, where

� Q is a normalized vector of
⊗n−1

i=0 C2 for some n ≥ 0.
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� M is a lambda term.

� L is an injective linker function from a set V of variables to {0, . . . , n− 1}.

Since linked variables can be freely renamed we assume no two closures have the same
linked variables.

Given two quantum states [Q1, L1,M1] and [Q2, L2,M2] we denote L1 ∪ L2 the union
of the two (disjoint) linker functions, assuming the target qubit vector is the result of the
tensor product Q1 ⊗Q2.

(L1 ∪ L2)(x) =

{
L1(x) if x ∈ domain(L1)

L2(x) + |Q1| if x ∈ domain(L2)

The following functions allow us to refer to the different parts of the states.

st([Q,L,M ]) = Q

lnk([Q,L,M ]) = L

term([Q,L,M ]) = M

We extend the notion of substitution to closures as follows

Q[R/x] = [st(Q)⊗ st(R), lnk(Q) ∪ lnk(R), term(Q)[term(R)/x]]

where Q,R ∈ Cq.
A quantum closure Q is well-typed of type A in a typing context Γ (written Γ ` Q :

A) if dom(lnk(Q)) ∩ dom(Γ) = ∅, FV(term(Q)) \ dom(Γ) ⊆ dom(lnk(Q)), and Γ, x1 :
qbit, . . . , xn : qbit ` Q : A is a valid type judgement, where {x1, . . . , xn} = FV(term(Q)) \
dom(Γ). That is, Q is well-typed if the variables used as qubit pointers are not in Γ and
assigning them the type qbit results in term(Q) being well-typed under Γ.

Finally, we call a quantum closure Q a program if ` Q : A is a valid type judgement
for some type A.

Example 2.1.4 The coin example in Example 2.1.1 can be written as a quantum closure
with an already-initialized state |+〉 as follows:

[|+〉 , {x0 7→ 0}, if meas x0 then t else r]

Notice that the closure is a program only if t and r are closed terms.

2.1.2 Rewrite system

The calculus λq uses a probabilistic reduction system to model the behaviour of the mea-
surement operation. In a probabilistic reduction system, a reduction step may reduce to
a number of different terms, based on a given probability distribution. When defining the
rewrite rules, the associated probability p is written besides the reduction arrow, ↪→p.

λq uses a weak call-by-value reduction strategy. The rewrite rules are presented in
Table 2.2.

The set of term values Vq is defined as follows:

v ::= x | λx. t | 0 | 1 | meas | new | U | ∗ | 〈v, v〉

A closure value is a quantum closure of the form [Q,L, v] where v ∈ Vq.
The trace of a term is the probabilistic tree of all its possible derivations.
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[Q, L, (λx. M)v] ↪→1 [Q, L, M [v/x]]

[Q, L, let 〈x1, x2〉 = 〈v2, v1〉 in N ] ↪→1 [Q, L, N [v1/x1, v2/x2]]

[Q, L, let ∗ = ∗ in N ] ↪→1 [Q, L, N ]

[Q, L, if 0 thenM else N ] ↪→1 [Q, L, N ]

[Q, L, if 1 thenM else N ] ↪→1 [Q, L, M ]

If w is a fresh variable:

[Q, |x1, . . . , xn〉 , new 0] ↪→1 [Q⊗ |0〉 , |x1, . . . , xn, w〉 , w]

[Q, |x1, . . . , xn〉 , new 1] ↪→1 [Q⊗ |1〉 , |x1, . . . , xn, w〉 , w]

If Q′ is the result of applying U to the qubits L(x1), . . . , L(xn) in Q:

[Q, L, U 〈x1, . . . , xn〉] ↪→1 [Q′, L, 〈x1, . . . , xn〉]

If Qbj ∈ C2i−1

, Q̃bj ∈ C2n−i

, Q =
∑
j Q

0
j ⊗ αj |0〉 ⊗ Q̃0

j +
∑
j Q

1
j ⊗ βj |1〉 ⊗ Q̃1

j , α =
∑
j αj , and

β =
∑
j βj :

[Q, |x1, . . . , xn〉 , meas xi] ↪→|α|2 [
∑
j

Q0
j ⊗ Q̃0

j , |x1, . . . , xi−1, xi+1, . . . , xn〉 , 0]

[Q, |x1, . . . , xn〉 , meas xi] ↪→|β|2 [
∑
j

Q1
j ⊗ Q̃1

j , |x1, . . . , xi−1, xi+1, . . . , xn〉 , 1]

[Q, L, N ] ↪→p [Q′, L′, N ′]

[Q, L, MN ] ↪→p [Q′, L′, MN ′]

[Q, L, M ] ↪→p [Q′, L′, M ′]

[Q, L, Mv] ↪→p [Q′, L′, M ′v]

[Q, L, M1] ↪→p [Q′, L′, M ′1]

[Q, L, 〈M1,M2〉] ↪→p [Q′, L′, 〈M ′1,M2〉]
[Q, L, M2] ↪→p [Q′, L′, M ′2]

[Q, L, 〈v1,M2〉] ↪→p [Q′, L′, 〈v1,M ′2〉]

[Q, L, P ] ↪→p [Q′, L′, P ′]

[Q, L, if P thenM else N ] ↪→p [Q′, L′, if P ′ thenM else N ]

[Q, L, M ] ↪→p [Q′, L′, M ′]

[Q, L, let 〈x1, x2〉 = M in N ] ↪→p [Q′, L′, let 〈x1, x2〉 = M ′ in N ]

[Q, L, M ] ↪→p [Q′, L′, M ′]

[Q, L, let ∗ = M in N ] ↪→p [Q′, L′, let ∗ = M ′ in N ]

Table 2.2: Rewrite system for λq
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Example 2.1.5 The following trace corresponds to a closure based on the coin-flipping
term from Example 2.1.1.

[∗,∅, if meas(H(new 0)) then t else r]

[|0〉 , {x0 7→ 0}, if meas (H x0) then t else r]

[|+〉 , {x0 7→ 0}, if meas x0 then t else r]

[∗,∅, if 1 then t else r]

[∗,∅, t]

[∗,∅, if 0 then t else r]

[∗,∅, r]

1

1

1
2

1

1
2

1

2.1.3 Reorder and deletion equivalence

We define a notion of equivalence between quantum closures, allowing for reordering the
qubits in the state and dropping the unused ones. The definition is given in two parts:

Given two states X = [Qx, Lx,Mx] and Y = [Qy, Ly,My],

� X ≈delete Y iff there exists a state QA such that Mx = My, Qx = QA ⊗ Q′x, Qy =
QA⊗Q′y, FV(Mx) ⊆ dom(Lx) ∪ dom(Ly), and ∀x ∈ FV(Mx), Lx(x) = Ly(x) < |QA|.

� X ≈swap Y iff (Qx, Lx) =α (Qy, Ly), using the α equivalence for quantum contexts
described in [SV08] and Mx =α My.

Finally we define ≈ as the transitive reflexive and symmetric closure of ≈delete ∪ ≈swap.
In this thesis we consider the quantum closures modulo ≈-equivalence.

Example 2.1.6 Let X be a quantum closure with unused qubits in its state,

X[|0110〉 ⊗ |ψ〉 , {x0 7→ 0, . . . , x3 7→ 3}, 〈x0, x1, x2, x3〉]
Then the extra qubits can be discarded:

Y [|0110〉 , {x0 7→ 0, . . . , x3 7→ 3}, 〈x0, x1, x2, x3〉] ≈delete X

Example 2.1.7 Consider a quantum closure with a two-qubit state,

X = [|φ〉 ⊗ |ψ〉 , {x0 7→ 0, x1 7→ 1}, 〈x0, x1〉].
It is swap-equivalent to a similar state with an inverted qubit order:

Y = [|ψ〉 ⊗ |φ〉 , {x0 7→ 1, x1 7→ 0}, 〈x0, x1〉] ≈swap X.

Remark 2.1.8 The qubits dropped by ≈delete must not be used in the term, but neither
can they be entangled with qubits that are being used. This is expressed in the definition
of the equivalence by requiring the relevant state QA to be separable.

2.1.4 The caseof statement

We can extend the binary if then else construction to an arbitrary number of bits by defin-
ing a case statement as a notation, as follows.
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Let Γ ` bk : bitk and ∆ ` t0 : A, . . . ,∆ ` t2k−1 : A. Then

case bk of {t0, . . . , t2k−1} =


t0 if k = 0

let 〈b0, bk−1〉 = bk in

if b0 then case bk−1 of {t2k−1 , . . . , t2k−1}
else case bk−1 of {t0, . . . , t2k−1−1} if k > 0

Lemma 2.1.9 The typing rule for the case construction can be derived using the rules if
and ⊗E. We refer to this derivation as follows:

Γ ` bk : bitk ∆ ` t0 : A . . . ∆ ` t2k−1 : A

Γ,∆ ` case bk of {t0, . . . , t2k−1} : A
case

Proof We proceed by induction on k.

� If k = 0. By hypothesis ∆ ` t0 : A and then, by Lemma 2.1.2, Γ,∆ ` t0 : A = Γ,∆ `
case b0 of {t0}.

� If k > 1,

Γ ` bk : bitk

b0 : bit ` b0 : bit
ax1

Π1 Π2

∆, b0 : bit, bk−1 : bitk−1 `
if b0 then case bk−1 of {t2k−1 , . . . , t2k−1}

else case bk−1 of {t0, . . . , t2k−1−1}
: A

if

Γ,∆ `
let 〈b0, bk−1〉 = bk in if b0 then case bk−1 of {t2k−1 , . . . , t2k−1}

else case bk−1 of {t0, . . . , t2k−1−1}
: A

⊗E

Where

Π1 :

bk−1 : bit ` bk−1 : bit
ax1

∆ ` t2k−1 : A . . . ∆ ` t2k−1 : A

∆, bk−1 : bitk−1 ` case bk−1 of {t2k−1 , . . . , t2k−1}
case

Π2 :

bk−1 : bit ` bk−1 : bit
ax1

∆ ` t0 : A . . . ∆ ` t2k−1−1 : A

∆, bk−1 : bitk−1 ` case bk−1 of {t0, . . . , t2k−1−1}
case

�

Example 2.1.10 The following term uses a case statement to choose between four vari-
ables using a two-bit tuple:

case 〈0, 1〉 of {x0, x1, x2, x3}
= if 0 then (case 1 of {x2, x3}) else (case 1 of {x0, x1})
= if 0 then (if 1 then x3 else x2) else (if 1 then x1 else x0)

2.2 λρ, a density matrix calculus

Diaz-Caro introduced λρ in [DC17], a quantum lambda calculus using density matrices to
describe quantum data.
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The calculus is based on the same semantics as the calculus λq presented in Section 2.1,
but it encodes the states directly within the terms, without resorting to an external quan-
tum closure. While this makes the programs simpler, it does not allow us to separate
entangled qubits as we can do by using pointers in λq.

λρ uses a probabilistic reduction system, (cf. Subsection 2.1.2), to model the mea-
surement operation. While mixed state density matrices can be encoded in a term, the
probabilistic measurement of a pure state always creates a pure state. In Section 2.3 we
present a variation of λρ called λoρ [DC17] that exploits the ability of density matrices to
encode all the posible results of a measurement as a mixed state, and generalizes them to
arbitrary terms.

λρ extends the simply typed lambda calculus with terms representing the quantum
postulates and terms for the classical control, adding a term for measurement results and
a branching term based on such results. We refer to the set of terms in λρ as Λρ, and
define them as:

t ::= x | tt | λx. t |
ρn | Unt | πmt | t⊗ t |
(bm, ρn) | letcase x = r in {t, . . . , t}

Where ρn represents an n-qubit density matrix, Un corresponds to an n-qubit quantum
gate applied to the first qubits of the state, πm represents a measurement of the first m
qubits in a state, (bm, ρn) is a pair of an m-bit number representing a measurement result
and the resulting density matrix ρn, and the letcase construction chooses between a number
of terms based on that result.

The types in λρ are defined as:

A ::= n | (m,n) | A( A

Where n,m ∈ N. The intuition is that a term with type n represents an n-qubit density
matrix, (m,n) is the result of a measurement over the first m qubits of an n-qubit state,
and A( B corresponds to an affine function. We refer the set of types as Πρ.

λρ defines an affine typing system, given in Table 2.3. This typing system admits the
weakening rule (Lemma 2.2.1).

∆, x : A ` x : A
ax

Γ, x : A ` t : B

Γ ` λx.t : A( B
(i

Γ ` t : A( B ∆ ` r : A
Γ,∆ ` tr : B

(e

∆ ` ρn : n
axρ Γ ` t : n

Γ ` Umt : n
u

Γ ` t : n
Γ ` πmt : (m,n)

m Γ ` t : n ∆ ` r : m
Γ,∆ ` t⊗ r : n+m

⊗

∆ ` (bm, ρn) : (m,n)
axam

∆, x : n ` t0 : A . . . ∆, x : n ` t2m−1 : A Γ ` r : (m,n)

Γ,∆ ` letcase x = r in t0, . . . , t2m−1 : A
lc

Table 2.3: Typing rules for λρ

We have slightly modified the rule lc from its original presentation in order to allow for
an arbitrary context ∆ in the typing of each ti. In a reduction system without a reduction
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strategy this modification would produce a non confluent calculus [Rom19], but since we
will fix an strategy (cf. Section 2.2.1) this does not present a problem in our case.

Lemma 2.2.1 (Weakening) If Γ ` t : A and x 6∈ FV(t), then Γ, x : B ` t : A. �

Example 2.2.2 We can rewrite the fair coin example from Example 2.1.1 in λρ. Let t
and r be two arbitrary terms and let H be the Hadamard gate, we can describe the choice
between the two terms by flipping a fair coin as:

letcase x = π1(H |0〉〈0|) in {t, r}

Notice that we could also have written H |0〉〈0| directly as the density matrix |+〉〈+|.

Remark 2.2.3 When applying unitary operators to density matrices, we use Uρ as syn-
tactic notation for UρU †.

Example 2.2.4 Given a context Γ = t : A, r : A, we can write the following type deriva-
tion for the term in Example 2.2.2:

` |0〉〈0| : 1
axρ

` H |0〉〈0| : 1
u

` π1(H |0〉〈0|) : (1, 1)
m

Γ, x : 1 ` t : A
ax

Γ, x : 1 ` r : A
ax

Γ ` letcase x = π1(H |0〉〈0|) in {t, r} : A
if

2.2.1 Rewrite system and reduction strategy

λρ has no defined strategy, but since λq’s reduction (cf. Subsection 2.1.2) is call-by-value,
we fix the same strategy. We could also have fixed a call-by-name strategy and used the
technique described in [Plo75] to simulate call-by-value.

λρ has the affine probabilistic reduction system given in Table 2.4. If Um is applied
to a state ρn, with m ≤ n, we write Um the extension of the gate Um to the higher
dimension using the identity operator, Um = Um ⊗ In−m. Similarly, we extend the m-
qubit observables {πmi }i of a measurement πm to measure the only first qubits of an
n-qubit system as πmi = πmi ⊗ In−m.

The presentation of λρ given here is slightly modified from its original version to
consider ρ1 ⊗ ρ2 = ρ3 instead of ρ1 ⊗ ρ2 −→1 ρ3. Indeed, there is no computational
meaning for such a rewrite rule. In Section 3.1 we discuss the translation in the presence
of this rule.

We write the set of values of λρ as Vρ. They are defined as follows:

v := x | λx.t | ρn | (bm, ρn)

Example 2.2.5 The following trace corresponds to the coin-flipping term from Exam-
ple 2.2.2.
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(λx. t)V −→1 tr[V/x]

Umρn −→1 ρ
′n with ρ′n = Um ρn Um

†

πmρn −→pi (i, ρni ) with

pi = tr(πmi
†
πmi ρn)

ρni =
πm
i
†
ρn πm

i
pi

letcase x = (bm, ρn) in {t0, . . . , t2m−1} −→1 tbm [ρn/x]

ρn1 ⊗ ρm2 = ρn+m with ρn+m = ρn1 ⊗ ρm2

t −→p r

t v −→p r v

t −→p r

s t −→p s r

t −→p r

Unt −→p U
nr

t −→p r

πnt −→p π
nr

t −→p r

letcase x = t in {s0, . . . , sn} −→p letcase x = r in {s0, . . . , sn}

Table 2.4: Rewrite system for λρ

letcase x = π1(H |0〉〈0|) in {t, r}

letcase x = π1 |+〉〈+| in {t, r}

letcase x = (0, |0〉〈0|) in {t, r}

t

letcase x = (1, |1〉〈1|) in {t, r}

r

1

1
2

1

1
2

1

2.2.2 Denotational semantics

We use the interpretation of typed terms into generalized mixed states for λρ described
in [DC17].

Types are interpreted into sets of density matrices and functions. We define it in
Table 2.5. Dn is the set of n-qubit density matrices, trd is a helper function such that
trd({(pi, bi, ei)}i) = {ei}i, w is a weight function w({(pi, bi, ei)}i) =

∑
i pi, and P (b, A) is

the following proposition: [(A = ~B( (m,n))⇒ b 6= ε].

JnK = Dn
J(m,n)K = Dn

JA( BK = {f | ∀e ∈ JAK, ∀b ∈ Nε s.t. P (b, A),

trd(f(b, e)) ⊆ JBK,w(f(b, e)) = 1 and P (f(b, e), B)}

Table 2.5: Type interpretation for λρ

Let Nε = N0 ∪ {ε}. Terms are interpreted into sets of tuples (p, b, e) where p ∈ (0, 1]
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represents a probability, b ∈ Nε is the output of a measurement if it occurred, and e ∈ JAK
for some type A. In Table 2.6 we define the interpretation with respect to a valuation
θ : V → Nε × E, where E =

⋃
A∈TypesJAK.

JxKθ = {(1, b, e)} where θ(x) = (b, e)

Jλx.tKθ = {(1, ε, (b, e) 7→ JtKθ,x=(b,e))}
Jt1 t2Kθ = {(pi qj hijk, b′′ijk, gijk) | JrKθ = {(pi, bi, ei)}i,

JtKθ = {(qj , b′j , fi)}j , and

fj(bi, ei) = {(hijk, b′′ijk, gijk)}k}
JρnKθ = {(1, ε, ρn)}

JUntKθ = {(pi, ε, UnρiUn
†
) | JtKθ = {(pi, bi, ρi)}j}

JπmtKθ = {(pj tr(πi†πiρj), i,
πiρjπi

†

tr(πi†πiρj)
) | JtKθ = {(pj , bj , ρj)}j}

Jt⊗ rKθ = {(pi qj , ε, ρi ⊗ ρ′j) | JtKθ = {(pi, bi, ρi)}i, JrKθ = {(qj , b′j , ρ′j)}j}
J(bm, ρn)Kθ = {(1, bm, ρn)}

Jletcase x = r in {t0, . . . , t2m−1}Kθ = {(pi qij , b′ij , eij) | JrKθ = {(pi, bi, ρi)}i, and

JtbiKθ,x=(ε,ρi) = {(qij , b′ij , eij)}j}

Table 2.6: Term interpretation for λρ

Example 2.2.6 We can determine the interpretation corresponding to the coin-flipping
term from Example 2.2.2 under a valuation θ. We have

JH |0〉〈0|Kθ = {(1, ε, |+〉〈+|)}

Jπ1(H |0〉〈0|)Kθ = {(1

2
, 0, |0〉〈0|), (1

2
, 1, |1〉〈1|)}.

Let JtKθ = {(1, bt, et)} and JrKθ = {(1, br, er)} where θ(t) = (bt, et) and θ(t) = (br, er)
hence,

Jletcase x = π1(H |0〉〈0|) in {t, r}Kθ = {(1

2
, bt, et), (

1

2
, br, er)}.

2.3 λoρ, the generalized λρ

In [DC17], Diaz-Caro also defines a variation to the λρ calculus presented in Section 2.2
called λoρ, or generalized lambda rho. This calculus replaces the probabilistic reduction
system with a deterministic system in which a letcase on a measurement operation reduces
to a linear combination of the resulting terms,

letcaseo x = πmρn in t0, . . . , t2m − 1 
∑
i

piti[ρ
n
i /x].

We call this linear combination of terms a generalized density matrix, and define it
following the grammar of the algebraic lambda-calculi [AD17, ADCP+14, Vau09].
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Terms in λoρ correspond to the terms in λρ, replacing the measurement result with the
linear combination of terms. We refer to the set of terms as Λoρ.

t ::= x | tt | λx.t | ρn | Unt | πnt | t⊗ r |
n∑
i=1

piti | letcaseo x = r in {t, . . . , t}

Where pi ∈ (0, 1],
∑n

i=1 pi = 1, and
∑

is considered modulo associativity and commuta-
tivity.

λoρ uses the same set of types as λρ, Πρ, defined as:

type A ::= n | (m,n) | A( A

The type system for λoρ is defined in Table 2.7. As in λρ, we allow for an arbitrary
context ∆ in the rule lco.

∆, x : A ` x : A
ax

Γ, x : A ` t : B

Γ ` λx.t : A( B
(i

Γ ` t : A( B ∆ ` r : A
Γ,∆ ` tr : B

(e

∆ ` ρn : n
axρ Γ ` t : n

Γ ` Umt : n
u

Γ ` t : n
Γ ` πmt : (m,n)

m Γ ` t : n ∆ ` r : m
Γ,∆ ` t⊗ r : n+m

⊗

∆, x : n ` t0 : A . . . ∆, x : n ` t2m−1 : A Γ ` r : (m,n)

Γ,∆ ` letcaseo x = r in t0, . . . , t2m−1 : A
lco

Γ ` t1 : A . . . Γ ` tn : A
∑n
i=1 pi = 1

Γ `
∑n
i=1 piti : A

+

Table 2.7: Typing rules for λoρ

Example 2.3.1 The fair coin example from Example 2.1.1 can be written in λoρ with the
same term from λρ as in Example 2.2.2,

letcaseo x = π1(H |0〉〈0|) in {t, r},

but in this case we can also write the linear combination between t and r directly as

1

2
t+

1

2
r.

Example 2.3.2 Given a context Γ such that Γ ` t : A and Γ ` r : A, we can write a type
derivation for the sum term in Example 2.3.1 using the rule + as follows:

Γ ` t : A Γ ` r : A

Γ ` 1
2 t+ 1

2 r : A
+
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2.3.1 Rewrite system

As discussed for λρ in Section 2.2.1, we choose to use a weak call-by-value strategy for λoρ.

The rewrite rules are defined in table 2.8. As in Section 2.2.1, we write Um and πmi for
the extension to n-qubit states of m-qubit operators and observables.

We refer to the set of values of λoρ as V o
ρ . They are defined as:

v := x | ρn | λx. t |
∑
i

pivi with vi 6= vj if i 6= j

(λx.t)r  t[r/x]

letcaseo x = πmρn in t0, . . . , t2m−1  
∑
i

piti[ρ
n
i /x] with

{
ρni =

πm
i ρnπm

i
†

pi

pi = tr(πmi
†
πmi ρ

n)

Umρn  ρ′
n

with UmρnUm
†

= ρ′
n∑

i

piρi  ρ′ with ρ′ =
∑
i

piρi∑
i

pit t

(
∑
i

piti)r  
∑
i

pi(tir)

ρn1 ⊗ ρm2 = ρn+m with ρn+m = ρn1 ⊗ ρm2

t r
tv  rv

t r
st sr

t r
Unt Unr

tj  rj∑n
i=1 piti  

∑n
i=1 piri

(∀i6=j,ti=rj)

t r
letcaseo x = t in s0, . . . , s2m−1  letcaseo x = r in s0, . . . , s2m−1

Table 2.8: Rewrite system for λoρ

Example 2.3.3 The following deterministic trace corresponds to the coin-flipping term
in Example 2.3.1:

letcaseo x = π1(H |0〉〈0|) in {t, r} letcaseo x = π1 |+〉〈+| in {t, r} 1

2
t+

1

2
r

2.3.2 Interpretation

As in [DC17] we use the interpretation for types introduced in 2.2.2 for λρ. It suffices to
make a small modification to the interpretation of terms, dropping the term (bm, ρn) and
defining an interpretation for the sum term as follows:

J
∑
i

pi tiKθ = {(pi qij , bij , eij) | JtiKθ = {(qij , bij , eij)}j}
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Example 2.3.4 Given the terms t, r ∈ Λoρ and a valuation θ such that JtKθ = {(1, bt, et)}
and JrKθ = {(1, br, er)}, we can calculate the type interpretation for the linear term in the
coin-flipping Example 2.3.1 as follows:

J
1

2
t+

1

2
rKθ = {(1

2
, bt, et), (

1

2
, br, er)}.

Notice that this is the same interpretation as for the equivalent coin-flipping term in Ex-
ample 2.3.4. This is not casual. Both calculi have the same interpretation, and hence can
be considered as two representations of the same phenomenon.





Chapter 3

Simulations

In this chapter we define a number of translations between the calculi λρ, λ
o
ρ, and λq

following the schema bellow, where the dashed lines represent inverse translations defined
over the image of the forward translation.

λρ λqλoρ

L·M

L·M−1

{{·}}

{{·}}−1

In Section 3.1 we define L·M, a translation from λρ to λq. In Section 3.2 we then define
L·M−1, a left inverse for the translation L·M. In Section 3.3, we define a translation between
λoρ and λρ denoted as {{·}} that we compose with L·M to obtain a full translation from λoρ
to λq. And finally, in Section 3.4 we define {{·}}−1, a pseudoinverse for {{·}}.

3.1 Translation from λρ to λq

In this section we define the translation L·M from terms in λρ to closures in λq.

Terms in λρ may contain mixed state density matrices, which cannot be directly trans-
lated to a quantum state in λq, since quantum closures can only describe pure states.
Hence, we first define a purification method for density matrices.

3.1.1 Mixed state purification

Based on the state purification technique (cf. [NC10, Chapter I-Section 2.5]), we define a
purification function for mixed state density matrices. The idea of the method is to add
extra qubits to the system to encode the mixed states as part of a bigger pure states.

Suppose that we are given a state ρA of an n-qubit quantum system A. Since ρA is a
positive semidefinite matrix, it has a spectral decomposition ρA =

∑2n

i=1 λi |vi〉〈vi|, where
{|vi〉} is an orthonormal basis of eigenvectors [KC09].

Let B be another n-qubit quantum system and let { |ei〉 }i=1,...,n be an ortonormal

basis for B, such that if ρA describes a mixed state, the following purification of ρA is a
pure state in the system A⊗B:

25
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pur(ρA) = |ψ〉〈ψ| , where |ψ〉 =
∑
i

√
λi |vi〉 ⊗ |ei〉 .

If ρA already corresponds to a pure state, then pur(ρA) = ρA.

Notice that ρA corresponds to the reduced density operator of pur(ρA) for the system
A described in Section 1.2,

ρA = trB(pur(ρA)) where tr∅ = id.

Example 3.1.1 Let ρ describe the fully mixed state of a one qubit quantum system:

ρ =
1

2
|0〉〈0|+ 1

2
|1〉〈1| =

[
1
2 0
0 1

2

]
Let B be another one-qubit system and let us choose the orthonormal basis for B,

{|0〉 , |1〉} in the purification. We can find a pure state that contains ρ by purifying it
through B:

pur(ρ) = |ψ〉〈ψ| , where |ψ〉 =
1√
2
|00〉+

1√
2
|11〉 ,

pur(ρ) =
1

2
|00〉〈00|+ 1

2
|00〉〈11|+ 1

2
|11〉〈00|+ 1

2
|11〉〈11| =


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2


Notice that we can get ρ back from the purified state:

trB(pur(ρ)) =
1

2
|0〉〈0|+ 1

2
|1〉〈1| = ρ

3.1.2 Translation definition

In λρ the quantum state is described directly in the terms as density matrices. Instead,
λq uses a quantum closure containing a single external quantum state, and uses pointer
variables in the term to refer to specific qubits. We must, therefore, translate λρ-terms to
quantum closures in λq in order to encode the density matrices.

We define the translation L·M : Λρ → Cq inductively in Table 3.1.

Since both calculi include the simply typed lambda calculus, we translate it directly and
combine any quantum states from the translated subterms. We also define the translations
for the unitary operator term, the tensor term, and the measurement result in the same
manner.

The translation of density matrices makes use of the purification method defined pre-
viously. We encode any mixed state density matrix as a bigger pure state, and reference
only the first qubits that correspond to the original quantum system.

For the measurement term πm we must translate an m-qubit measurement from λρ
using the single qubit meas operation from λq, and return a tuple that contains both
the result and the collapsed state, mimicking the operation performed by λρ. Since we
cannot duplicate qubit variables, we are forced to recreate the measured qubits using new
operations and forget about the measured qubits. Since we consider quantum closures
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LxM = [∗,∅, x]

Lλx. tM = [st(LtM), lnk(LtM), λx. term(LtM)]
Lt1 t2M = [st(Lt1M)⊗ st(Lt2M), lnk(Lt1M) ∪ lnk(Lt2M), term(Lt1M) term(Lt2M)]

LρnM = [|φ〉 , {xi 7→ i}ni=1, 〈x1, . . . , xn〉] where pur(ρn) = |φ〉〈φ|
LUn tM = [st(LtM), lnk(LtM), Un term(LtM)]
Lπm tM = [st(LtM), lnk(LtM), let 〈x1, . . . , xn〉 = term(LtM)

in let 〈b1, . . . , bm〉 = 〈meas x1, . . . , meas xm〉
in 〈b1, . . . , bm, new b1, . . . , new bm, xm+1, . . . , xn〉]

Lt1 ⊗ t2M = [st(Lt1M)⊗ st(Lt2M), lnk(Lt1M) ∪ lnk(Lt2M), 〈term(Lt1M), term(Lt2M)〉]
Lbm, ρnM = [st(LρnM), lnk(LρnM), 〈b, term(LρnM)〉]

where b is bm expressed as a m-uple of {0,1}
Lletcase x = r in {t1, . . . , t2n}M

= [st(LrM)⊗
2n⊗
i=1

st(LtiM), lnk(LrM) ∪
2n⋃
i=1

lnk(LtiM),

let 〈b, x〉 = term(LrM) in case b of {term(LtM1), . . . , term(Lt2nM)}]

Table 3.1: Translation from λρ to λq

modulo ≈-equivalence (cf. Subsection 2.1.3) we can discard the leftover qubits from the
state.

The letcase translation is defined as a tree of if then else, using the caseof statement
defined in Section 2.1.

Example 3.1.2 Consider the coin-flipping term in Example 2.2.2,

t = letcase x = π1(H |0〉〈0|) in {r1, r2}.

The translation of t results in a similar term in λq, using the corresponding operations:

LtM = [st(Lπ1(H |0〉〈0|)M)⊗ st(Lr1M)⊗ st(Lr2M), lnk(Lπ1(H |0〉〈0|)M) ∪ lnk(Lr1M) ∪ lnk(Lr2M),

let 〈b, x〉 = term(Lπ1(H |0〉〈0|)M) in case b of {Lr1M, Lr2M}]
= [|0〉 , {x0 7→ 0},

let 〈b, x〉 = (let 〈y0〉 = H 〈x0〉 in let 〈b0〉 = 〈meas y0〉 in 〈b0, new b0〉)
in case b of {r1, r2}]

Example 3.1.3 Consider the term that measures the first qubit in a two-qubit state and
matches on the result,

t = letcase x = π1 |+0〉〈+0| in {x, x}.

The translation of t has to assign variables to each qubit in the pair L|+0〉〈+0|M to
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measure only the first one:

LtM = [st(Lπ1 |+0〉〈+0|M), lnk(Lπ1 |+0〉〈+0|M),
let 〈b, x〉 = term(Lπ1 |+0〉〈+0|M) in case b of {x, x}]

= [|+0〉 , {x0 7→ 0, x1 7→ 1},
let 〈b, x〉 = (let 〈y0, y1〉 = 〈x0, x1〉 in

let 〈b0〉 = 〈meas y0〉 in 〈b0, new b0, y1〉) in case b of {x, x}]

Types and contexts are translated as shown in Table 3.2.

L·M : Πρ → Πq

LnM = qbitn

L(m,n)M = bitm ⊗ qbitn

LA( BM = LAM( LBM

LΓM = {x : LAM | x : A ∈ Γ}

Table 3.2: Type translation from λρ to λq

Let c ∈ Cq (the set of quantum closures) and t = term(t), then we write FVΓ(t)
the set of free variables in t that are not in the typing context Γ. Furthermore, we write
FVΓ(t) : qbit the context in λq composed by the typing judgement x : qbit for each variable
in the set.

FVΓ(c) : qbit = {x : qbit | x ∈ FVΓ(c)}

If Γ ` c, then FVΓ(t) corresponds to the variables in t used as pointers to qubits in the
quantum register, and Γ,FVΓ(t) : qbit ` t.

Example 3.1.4 (Context translation) Let Γ be the following typing context in λρ:

Γ = {x : 2, y : 2( (1, 2)}

The context translation translates each type separately:

LΓM = {x : qbit2, y : qbit2 ( bit⊗ qbit2}

Example 3.1.5 (Free variables) Consider a quantum closure

c = [|φ〉 , {y 7→ 0}, if x then new 0 else y]

and a typing context Γ = {x : bit}. Then, FVΓ(c) = {y} and FVΓ(c) : qbit = {y : qbit}.
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3.1.3 Correctness

We prove below that when a well-typed term is translated, the type of the resulting closure
matches that of the translated type.

Theorem 3.1.6 If t ∈ Λρ and Γ ` t : A, then LΓM,FVLΓM(term(LtM)) : qbit ` term(LtM) : LAM

Proof We proceed by induction on the derivation of Γ ` t : A.

� Let Γ, x : A ` x : A as a consequence of rule ax. By rule ax1, we have LΓM, x : LAM `
x : LAM.

Notice that FVLΓ,x:AM(term(LxM)) = ∅, LΓ, x : AM = LΓM, x : LAM, and term(LxM) = x.

� Let Γ ` λx.t : A ( B as a consequence of Γ, x : A ` t : B and rule (i. By the
induction hypothesis, LΓ, x : AM,FVLΓ,x:AM(term(LtM)) : qbit ` term(LtM) : LBM. That
is, LΓM, x : LAM,FVLΓ,x:AM(term(LtM)) : qbit ` term(LtM) : LbM. Then, by rule (I , we
have LΓM,FVLΓM(λx.term(LtM)) : qbit ` λx.term(LtM) : LAM( LBM.

Notice that λx.term(LtM) = term(Lλx.tM), LAM( LBM = LA( BM, and FVLΓM(λx.term(
LtM)) = FVLΓ,x:AM(term(LtM)).

� Let Γ,∆ ` tr : B as a consequence of Γ ` t : A ( B, ∆ ` r : A and rule (e.
By the induction hypothesis, LΓM,FVLΓM(term(LtM)) : qbit ` term(LtM) : LA( BM, that
is LΓM,FVLΓM(term(LtM)) : qbit ` term(LtM) : LAM ( LBM, and L∆M,FVL∆M(term(LrM)) :
qbit ` term(LrM) : LAM. By rule (E, we have LΓM, L∆M, FVLΓM(term(LtM)) : qbit,
FVL∆M(term(LrM)) : qbit ` term(LtM)term(LrM) : LBM.

Notice that LΓ,∆M = LΓM, L∆M, term(LtrM) = term(LtM)term(LrM), and FVLΓM,L∆M(term(
LtrM)) = FVLΓM(term(LtM)),FVL∆M(term(LrM)).

� Let Γ ` ρn : n as a consequence of rule axρ. By rules ax1 and ⊗I , we have LΓM,
FVLΓM(〈x1, . . . , xn〉) : qbit ` 〈x1, . . . , xn〉 : qbitn.

Notice that term(LρnM) = 〈x1, . . . , xn〉, LnM = qbitn, and since the xi are fresh vari-
ables, FVLΓM(〈x1, . . . , xn〉) : qbit = {x1 : qbit, . . . , xn : qbit}.

� Let Γ ` Unt : n as a consequence of Γ ` t : n and rule u. By the induction hypothesis,
LΓM,FVLΓM(term(LtM)) : qbit ` term(LtM) : LnM. That is, LΓM,FVLΓM(U

nterm(LtM)) :
qbit ` term(LtM) : qbitn. By rule ax2, we have ` Un : qbitn ( qbitn. Then, by rule
(E, we have LΓM,FVLΓM(U

nterm(LtM)) : qbit ` Unterm(LtM) : qbitn.

Notice that Un term(LtM) = term(LUntM), LnM = qbitn, and FVLΓM(term(LtM)) = FVLΓM(
term(LUntM))

� Let Γ,∆ ` t ⊗ r : n + m as a consequence of Γ ` t : n, ∆ ` r : m and rule ⊗.
By the induction hypothesis, LΓM,FVLΓM(term(LtM)) : qbit ` term(LtM) : LnM, that is
LΓM,FVLΓM(term(LtM)) : qbit ` term(LtM) : qbitn, and L∆M,FVL∆M(term(LrM)) : qbit `
term(LrM) : LmM, that is, L∆M,FVL∆M(term(LrM)) : qbit ` term(LrM) : qbitm. By rule
⊗I , we have LΓM, L∆M, FVLΓM(term(LtM)) : qbit,FVL∆M(term(LrM)) : qbit ` 〈term(LtM),
term(LrM)〈: qbitn+m.

Notice that LΓ,∆M = LΓM, L∆M, Ln + mM = qbitn+m, term(Lt ⊗ rM) = 〈term(LtM),
term(LrM)〉, and FVLΓM,L∆M(term(LtrM)) = FVLΓM(term(LtM)),FVL∆M(term(LrM)).
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� Let Γ ` πmt : (m,n) as a consequence of Γ ` t : n and rule m. By the induction
hypothesis, LΓM,FVLΓM(term(LtM)) : qbit ` term(LtM) : LnM. That is, LΓM,FVLΓM(term(
LπmtM)) : qbit ` term(LtM) : qbitn.

It is easy to deduce by rules ⊗E, ⊗I , ax1, and ax2 the following judgement:

x1 : qbit, . . . , xn : qbit ` let 〈b1, . . . , bm〉 = 〈meas x1, . . . ,meas xm〉
in 〈b1, . . . , bm, new b1, . . . , new bm, xm+1, . . . , xn〉 : bitm ⊗ qbitn

Hence, by rule ⊗E,

LΓM,FVLΓM(term(LtM)) : qbit ` let 〈x1, . . . , xn〉 = term(LtM)

in let 〈b1, . . . , bm〉 = 〈meas x1, . . . ,meas xm〉
in 〈b1, . . . , bm, newb1, . . . , newbm, xm+1, . . . , xn〉 : bitm ⊗ qbitn

Notice that LnM = qbitn and FVLΓM(term(LπmtM)) = FVLΓM(term(LtM)).

� Let ∆ ` (bm, ρn) : (m,n) as a consequence of rule axam and let term(L(bm, ρn)M) =
〈b1, . . . , bm, x1, . . . , xn〉 with bj ∈ {0, 1} and xi ∈ V. By rule ax2, ` bi : bit for
j = 1, . . . ,m. By rule ax1, xi : qbit ` xi : qbit for i = 1, . . . , n. Then, by rule ⊗I ,
FVL∆M(term(L(bm, ρn)M)) : qbit ` 〈b1, . . . , bm, x1, . . . , xn〉 : bitm ⊗ qbitn. Hence, by
Lemma 2.1.2, L∆M,FVL∆M(term(L(bm, ρn)M)) : qbit ` 〈bm, 〈x1, . . . , xn〉〉 : bitm ⊗ qbitn.

Notice that L(m,n)M = bitm ⊗ qbitn and FVL∆M(term(L(bm, ρn)M)) = {x1, . . . , xn}.

� Let Γ,∆ ` letcase x = r in t1, . . . , t2m : A as a consequence of ∆, x : n ` t1 : A, . . . ,
∆, x : n ` t2m : A, Γ ` r : (m,n), and rule lc.

By the induction hypothesis, L∆, x : nM,FVL∆,x:nM(term(LtiM)) : qbit ` term(LtiM) : LAM
for i = 1, . . . , 2m, and LΓM,FVLΓM(term(LrM)) : qbit ` term(LrM) : L(m,n)M. That is,
L∆M, x : qbitn,FVL∆M,x:qbitn(term(LtiM)) : qbit ` term(LtiM) : LAM for i = 1, . . . , 2m, and
LΓM,FVLΓM(term(LrM)) : qbit ` term(LrM) : bitm ⊗ qbitn.

Let V =
⋃2m

i=1 FVL∆M,x:qbitn(term(LtiM)). By Lemma 2.1.2, L∆M, V : qbit, x : qbitn `
term(LtiM) : LAM for i = 1, . . . , 2m.

By rule ax1, bm : bitm ` bm : bitm. Then, by rule case, b : bitm, L∆M, V : qbit, x :
qbitn ` case b of {term(Lt1M), . . . , term(Lt2mM)} : LAM. Then, by rule ⊗E we have

LΓM, L∆M,FVLΓM(term(LrM)) : qbit, V : qbit `
let 〈b, x〉 = term(LrM) in case b of {term(Lt1M), . . . , term(Lt2nM)} : LAM

Notice that let 〈b, x〉 = term(LrM) in case b of {term(Lt1M), . . . , term(Lt2nM)} = term(
Lletcase x = r in t1, . . . , t2mM), L∆, x : nM = L∆M, x : qbitn, LΓ,∆M = LΓM, L∆M,
FV(LrM) ∩ (

⋃2m

i=1 FV(ti)) = ∅, and FVL∆M,x:qbitn(term(LtiM)) ∪ FVLΓM(term(LrM)) =
FVLΓM,L∆M(term(Lletcase x = r in t1, . . . , t2mM)). �

We now prove that the translation preserves the operational semantics. If a term in λρ
reduces to another with some probability, then the translation of the former reduces with
the same probability to the translation of the latter. We take advantage of this theorem
in Corollary 3.1.10 to prove the strong normalization property for λρ.

We first prove the following lemma, stating that the translation of a value from λρ is
a value in λq.
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Lemma 3.1.7 (Value preservation) If v ∈ Vρ, then term(LvM) ∈ Vq.

Proof We proceed by induction on the definition of Vρ.

� Let v = x. Notice that term(LxM) = x ∈ Vq.

� Let v = λx.t. Notice that term(Lλx.tM) = λx.term(LtM) ∈ Vq.

� Let v = ρn : n. Notice that term(LρnM) = 〈x1, . . . , xn〉 ∈ Vq.

� Let v = (bm, ρn). Notice that L(bm, ρn)M = 〈b, x1, . . . , xn〉 ∈ vSV . �

Then we need to prove that the translation commutes with substitution. That is,
translating a term after performing a substitution is equivalent to translating the original
term and the substituting.

Lemma 3.1.8 (Substitution) Given t, r ∈ Λρ, Lt[r/x]M = LtM[LrM/x]

Proof We proceed by structural induction on t.

� Let t = y.

– If x = y, notice that LxM = [∗, ∅, x] and L(x[r/x])M = LrM = LxM[LrM/x]

– If y 6= x, notice that Ly[r/x]M = LyM = LyM[LrM/x].

� Let t = λy.t′. We assume, without loss of generality, that x 6= y. By the induction
hypothesis, Lt′[r/x]M = Lt′M[LrM/x]

Therefore,

L(λy.t′)[r/x]M = Lλy.t′[r/x]M
= [st(Lt′[r/x]M), lnk(Lt′[r/x]M), λy. term(Lt′[r/x]M)]
= [st(Lt′M)⊗ st(LrM), lnk(Lt′M) ∪ lnk(LrM),
λy.term(Lt′M)[term(LrM)/x]]

= Lλy.t′M[LrM/x]

� Let t = t1 t2.

– If x ∈ FV(t1), then x 6∈ FV(t2) by the linearity property.

By the induction hypothesis, Lt1[r/x]M = Lt1M[LrM/x] Therefore,

L(t1 t2)[r/x]M = Lt1[r/x] t2M
= [st(Lt1[r/x]M)⊗ st(Lt2M), lnk(Lt1[r/x]M) ∪ lnk(Lt2M),

term(Lt1[r/x]M) term(Lt2M)]
= [st(Lt1M)⊗ st(LrM)⊗ st(Lt2M), lnk(Lt1M) ∪ lnk(LrM) ∪ lnk(Lt2M),

term(Lt1M)[term(LrM)/x] term(Lt2M)]
= [st(Lt1M)⊗ st(Lt2M)⊗ st(LrM), lnk(Lt1M) ∪ lnk(Lt2M) ∪ lnk(LrM),

(term(Lt1M) term(Lt2M))[term(LrM)/x]]

= Lt1 t2M[LrM/x]
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– If x 6∈ FV(t1), by the induction hypothesis, Lt2[r/x]M = Lt2M[LrM/x]

Therefore,

L(t1 t2)[r/x]M = Lt1 t2[r/x]M
= [st(Lt1M)⊗ st(Lt2[r/x]M), lnk(Lt1M) ∪ lnk(Lt2[r/x]M),

term(Lt1M) term(Lt2[r/x]M)]
= [st(Lt1M)⊗ st(Lt2M)⊗ st(LrM), lnk(Lt1M) ∪ lnk(Lt2M) ∪ lnk(LrM),

term(Lt1M) term(Lt2M)[term(LrM)/x]]

= [st(Lt1M)⊗ st(Lt2M)⊗ st(LrM), lnk(Lt1M) ∪ lnk(Lt2M) ∪ lnk(LrM),
(term(Lt1M) term(Lt2M))[term(LrM)/x]]

= Lt1 t2M[LrM/x]

� Let t = ρn. Notice that x is not a free variable in LρnM and therefore Lρn[r/x]M =
LρnM = LρnM[LrM/x].

� Let t = Un t′. By the induction hypothesis, Lt′[r/x]M = Lt′M[LrM/x] Therefore,

L(Un t′)[r/x]M = LUn t′[r/x]M
= [st(Lt′[r/x]M), lnk(Lt′[r/x]M), Un term(Lt′[r/x]M)]
= [st(Lt′M)⊗ st(LrM), lnk(Lt′M) ∪ lnk(LrM),

Un term(Lt′M)[term(LrM)/x]]

= LUn t′M[LrM/x]

� Let t = πn t′. By the induction hypothesis, Lt′[r/x]M = Lt′M[LrM/x]. Therefore,

L(πn t′)[r/x]M = Lπn t′[r/x]M
= [st(Lt′[r/x]M), lnk(Lt′[r/x]M), let 〈x1, . . . , xn〉 = term(Lt′[r/x]M)

in let 〈b1, . . . , bm〉 = 〈meas x1, . . . , meas xm〉
in 〈b1, . . . , bn, new b1, . . . , new bn, xm+1, . . . , xn〉]

= [st(Lt′M)⊗ st(LrM), lnk(Lt′M) ∪ lnk(LrM),
let 〈x1, . . . , xn〉 = term(Lt′M)[term(LrM)/x]

in let 〈b1, . . . , bm〉 = 〈meas x1, . . . , meas xm〉
in 〈b1, . . . , bn, new b1, . . . , new bn, xm+1, . . . , xn〉]

= [st(Lt′M)⊗ st(LrM), lnk(Lt′M) ∪ lnk(LrM),
(let 〈x1, . . . , xn〉 = term(Lt′M)

in let 〈b1, . . . , bm〉 = 〈meas x1, . . . , meas xm〉
in 〈b1, . . . , bn, new b1, . . . , new bn, xm+1, . . . , xn〉)

[term(LrM)/x]]

= Lπn t′M[LrM/x]

� Let t = t1 ⊗ t2.

– If x ∈ FV(t1), then x 6∈ FV(t2) by the linearity property.
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By the induction hypothesis, Lt1[r/x]M = Lt1M[LrM/x] Therefore,

L(t1 ⊗ t2)[r/x]M = Lt1[r/x]⊗ t2M
= [st(Lt1[r/x]M)⊗ st(Lt2M), lnk(Lt1[r/x]M) ∪ lnk(Lt2M),

term(Lt1[r/x]M)⊗ term(Lt2M)]
= [st(Lt1M)⊗ st(LrM)⊗ st(Lt2M), lnk(Lt1M) ∪ lnk(LrM) ∪ lnk(Lt2M),

term(Lt1M)[term(LrM)/x]⊗ term(Lt2M)]
= [st(Lt1M)⊗ st(Lt2M)⊗ st(LrM), lnk(Lt1M) ∪ lnk(Lt2M) ∪ lnk(LrM),

(term(Lt1M)⊗ term(Lt2M))[term(LrM)/x]]

= Lt1 ⊗ t2M[LrM/x]

– If x 6∈ FV(t1), by the induction hypothesis, Lt2[r/x]M = Lt2M[LrM/x]

Therefore,

L(t1 ⊗ t2)[r/x]M = Lt1 ⊗ t2[r/x]M
= [st(Lt1M)⊗ st(Lt2[r/x]M), lnk(Lt1M) ∪ lnk(Lt2[r/x]M),

term(Lt1M)⊗ term(Lt2[r/x]M)]
= [st(Lt1M)⊗ st(Lt2M)⊗ st(LrM), lnk(Lt1M) ∪ lnk(Lt2M) ∪ lnk(LrM),

term(Lt1M)⊗ term(Lt2M)[term(LrM)/x]]

= [st(Lt1M)⊗ st(Lt2M)⊗ st(LrM), lnk(Lt1M) ∪ lnk(Lt2M) ∪ lnk(LrM),
(term(Lt1M)⊗ term(Lt2M))[term(LrM)/x]]

= Lt1 ⊗ t2M[LrM/x]

� Let t = (b, t′). By the induction hypothesis, Lt′[r/x]M = Lt′M[LrM/x] Therefore,

L(b, t′)[r/x]M = L(b, t′[r/x])M
= [st(Lt′[r/x]M), lnk(Lt′[r/x]M), 〈b, term(Lt′[r/x]M)〉]
= [st(Lt′M)⊗ st(LrM), lnk(Lt′M) ∪ lnk(LrM),
〈b, term(Lt′M)[term(LrM)/x]〉]

= L(b, t′)M[LrM/x]

� Let t = letcase y = s in {t1, . . . , t2n}. We assume, without loss of generality, that
x 6= y.

– If there is an i ∈ {1, . . . , 2n} such that x ∈ FV(ti), then by the linearity property
x 6∈ FV(tj) ∀j 6= i and x 6∈ FV(s).

By the induction hypothesis, Lti[r/x]M = LtiM[LrM/x].
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Therefore,

L(letcase y = s in {t1, . . . , t2n})[r/x]M
= L(letcase y = s in {t1, . . . , ti[r/x], . . . , t2n})M

= [st(LsM)⊗
2n⊗
j=1
j 6=i

st(LtjM)⊗ st(Lti[r/x]M),

lnk(LsM) ∪
2n⋃
j=1
j 6=i

lnk(LtjM) ∪ lnk(Lti[r/x]M),

let 〈b, y〉 = term(LsM) in case b of

{term(Lt1M), . . . , term(Lti[r/x]M), . . . , term(Lt2nM)}]

= [st(LsM)⊗
2n⊗
j=1

st(LtjM)⊗ st(LrM),

lnk(LsM) ∪
2n⋃
j=1

lnk(LtjM) ∪ lnk(LrM),

let 〈b, y〉 = term(LsM) in case b of

{term(Lt1M), . . . , term(LtiM)[term(LrM)/x], . . . , term(Lt2nM)}]
= Lletcase y = s in {t1, . . . , t2n}M[LrM/x]

– If ∀i, x 6∈ FV(ti). By the induction hypothesis, Ls[r/x]M = LsM[LrM/x].

Hence,

L(letcase y = s in {t1, . . . , t2n})[r/x]M
= L(letcase y = s[r/x] in {t1, . . . , t2n})M

= [st(Ls[r/x]M)⊗
2n⊗
i=1

st(LtiM), lnk(Ls[r/x]M) ∪
2n⋃
i=1

lnk(LtiM),

let 〈b, y〉 = term(Ls[r/x]M) in case b of {term(Lt1M), . . . , term(Lt2nM)}]

= [st(LsM)⊗
2n⊗
i=1

st(LtiM)⊗ st(LrM),

lnk(LsM) ∪
2n⋃
i=1

lnk(LtiM) ∪ lnk(LrM),

let 〈b, y〉 = term(LsM)[term(LrM)/x] in

case b of {term(Lt1M), . . . , term(Lt2nM)}]
= Lletcase y = s in {t1, . . . , t2n}M[LrM/x] �

We can now prove the following theorem:

Theorem 3.1.9 Let t, r ∈ Λρ. If t −→p r, then LtM↪→+
p LrM.

Proof We proceed by induction on the relation −→p.
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� Let t = (λx. s)v, r = s[v/x], and p = 1 with v ∈ Vρ. Notice that
LtM = [st(LsM)⊗ st(LvM), lnk(LsM) ∪ lnk(LvM), (λx. term(LsM))term(LvM)]
LrM = [st(Ls[v/x]M), lnk(Ls[v/x]M), term(Ls[v/x]M)]

By Lemma 3.1.7, term(LvM) is a value. Therefore, LtM ↪→1 [st(LsM)⊗ st(LvM), lnk(LsM)∪
lnk(LvM), term(LsM)[term(LvM/x)]].

By Lemma 3.1.8, term(LsM)[term(LvM/x)] = term(Ls[v/x]M) = term(LrM).

� Let t = Um ρn, r = ρ′n, and p = 1 where ρ′n = UmρnUm
†
, pur(ρn) = |φ〉〈φ|

and pur(ρ′n) = |φ′〉〈φ′|. Notice that LtM = [|φ〉 , {xi 7→ i}ni=1, U〈x1, . . . , xn〉] ↪→1

[|φ′〉 , {xi 7→ i}ni=1, 〈x1, . . . , xn〉] = LrM.

� Let t = πmρn and r = (i, ρni ), where pur(ρ) = |φ〉〈φ|, pur(ρni ) = |φi〉〈φi|, and i1, . . . , im

is the binary encoding of i. Notice that

LtM = [|φ〉 , {xi 7→ i}ni=1, let 〈y1, . . . , yn〉 = 〈x1, . . . , xn〉
in let 〈b1, . . . , bm〉 = 〈meas y1, . . . ,meas ym〉

in 〈b1, . . . , bm, new b1, . . . , new bm, ym+1, . . . , yn〉]
↪→1 [|φ〉 , {xi 7→ i}ni=1, let 〈b1, . . . , bm〉 = 〈meas x1, . . . ,meas xm〉

in 〈b1, . . . , bm, newb1, . . . , new bm, xm+1, . . . , xn〉]
↪→→p [|φi〉 , {xi 7→ i}ni=1, let 〈b1, . . . , bm〉 = 〈i1, . . . , im〉

in 〈b1, . . . , bm, new b1, . . . , new bm, xm+1, . . . , xn〉]
↪→1 [|φi〉 , {xi 7→ i}ni=1, 〈i

1, . . . , im, new i1, . . . , new im, xm+1, . . . , xn〉]
↪→→1 [|φi〉 ⊗ |i〉 , {xi 7→ i}ni=1 ∪ {yi 7→ i}mi=1, 〈i

1, . . . , im, y1, . . . , ym, xm+1, . . . , xn〉]
= LrM

� Let t = (letcase x = (bm, ρn) in {t0, . . . , t2n−1}), r = tbm [ρn/x], and p = 1 where
pur(ρ) = |φ〉〈φ|. Notice that

LtM = [|φ〉 ⊗
2n⊗
i=1

st(LtiM), {xi 7→ i}ni=1 ∪
2n⋃
i=1

lnk(LtiM),

let 〈b, x〉 = 〈bm, x1, . . . , xn〉 in case b of {term(Lt1M), . . . , term(Lt2nM)}]

↪→→1 [|φ〉 ⊗
2n⊗
i=1

st(LtiM), {xi 7→ i}ni=1 ∪
2n⋃
i=1

lnk(LtiM), term(LtbmM)[〈x1, . . . , xn〉/x]]

= LrM

� Let t = s t′ and r = s r′, where t′ −→p r
′. By the induction hypothesis, Lt′M ↪→+

p Lr′M.
Therefore

LtM = [st(LsM)⊗ st(Lt′M), lnk(LsM) ∪ lnk(Lt′M), term(term(LsM) Lt′M)]
↪→+

p [st(LsM)⊗ st(Lr′M), lnk(LsM) ∪ lnk(Lr′M), term(term(LsM) Lr′M)]

= LrM
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� Let t = t′ s and r = r′ s where s ∈ Vρ and t′ −→p r
′. By Lemma 3.1.7, LsM is a value.

By the induction hypothesis, Lt′M ↪→+
p Lr′M. Therefore

LtM = [st(Lt′M)⊗ st(LsM), lnk(Lt′M) ∪ lnk(LsM), term(term(Lt′M) LsM)]
↪→+

p [st(Lr′M)⊗ st(LsM), lnk(Lr′M) ∪ lnk(LsM), term(term(Lr′M) LsM)]

= LrM

� Let t = Un t′ and r = Un r′, where t′ −→p r
′. By the induction hypothesis, Lt′M ↪→+

p

Lr′M. Therefore LtM = [st(Lt′M), lnk(Lt′M), Un term(Lt′M)] ↪→+
p [st(Lr′M), lnk(Lr′M), Un

term(Lr′M)] = LrM.

� Let t = πn t′ and r = πn r′, where t′ −→p r
′. By the induction hypothesis, Lt′M ↪→+

p

Lr′M. Therefore

LtM = [st(Lt′M), lnk(Lt′M), let 〈x1, . . . , xn〉 = term(Lt′M)
in let 〈b1, . . . , bm〉 = 〈meas x1, . . . , meas xm〉

in 〈b1, . . . , bm, new b1, . . . , new bm, xm+1, . . . , xn〉]
↪→+

p [st(Lr′M), lnk(Lr′M), let 〈x1, . . . , xn〉 = term(Lr′M)

in let 〈b1, . . . , bm〉 = 〈meas x1, . . . , meas xm〉
in 〈b1, . . . , bm, new b1, . . . , new bm, xm+1, . . . , xn〉]

= LrM

� Let t = Lletcase x = t′ in {s1, . . . , s2n}M and r = Lletcase x = r′ in {s1, . . . , s2n}M,
where t′ →p r

′. By the induction hypothesis, Lt′M ↪→+
p Lr′M. Therefore

LtM = [st(Lt′M)⊗
2n⊗
i=1

st(LsiM), lnk(Lt′M) ∪
2n⋃
i=1

lnk(LsiM),

let 〈b, x〉 = term(Lt′M) in case b of {term(Ls1M), . . . , term(Ls2nM)}]

↪→→+
p [st(Lr′M)⊗

2n⊗
i=1

st(LsiM), lnk(Lr′M) ∪
2n⋃
i=1

lnk(LsiM),

let 〈b, x〉 = term(Lr′M) in case b of {term(Ls1M), . . . , term(Ls2nM)}]
= LrM �

As a corollary of Theorem 3.1.9, we can prove the strong normalization of λρ. This
property states that any well-typed term cannot be reduced indefinitely. That is, by
reducing a term repeatedly we eventually reach a value.

Corollary 3.1.10 (Strong normalization) λρ is strong normalizing.

Proof By contradiction. Let t1 ∈ Λρ be a well-typed term and let t1 →p1 t2 →p2 . . . be an
infinite reduction.

By Theorem 3.1.9, LtiM→+
pi Lti+1M for all i.

Therefore there exists an infinite reduction in λq, but, by [SV08, Theorem 3.8], λq is
strong normalizing, which constitutes a contradiction.

Therefore, λρ is strong normalizing. �
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3.2 Retraction from λq to λρ

Having the quantum state represented with density matrices directly within the terms in
λρ allows us to define the generalization of terms used in λoρ easily, but it does not let us
separate entangled qubits and operate on them in separate parts of a term, as we can do
in λq.

For example, the following term in λq has no direct counterpart in λρ:

r = [β00, {xi 7→ i}2i=1, (t1 x1) (t2 x2)]

A translation of this quantum closure to λρ would require encoding the entangled quantum
state as a single density matrix, but we cannot join the qubit pointers x1 and x2 directly
because the term uses them as arguments in different applications.

Therefore, we cannot define a general inverse translation from λq to λρ. We can,
however, introduce a left inverse (also called a retraction) for the translation defined in
Section 3.1, to prove that L·M does not lose any information from the original terms.

L·M−1 : Im(L·M)→ Λρ

We inductively define the left-inverse in Table 3.3.

L[|φ〉 , L, x]M−1 = x

L[|φ〉 , L, λx. t]M−1 = λx. L[|φ〉 , L, t]M−1

L[|φ〉 , L, t1 t2]M−1 = L[|φ〉 , L, t1]M−1 L[|φ〉 , L, t2]M−1

L[|φ〉 , L, 〈x1, . . . , xn〉]M−1 = trEn(|φ〉〈φ|)
where xi : qbit and trEn is the trace over the first n qubits

L[|φ〉 , L, U t]M−1 = U L[|φ〉 , L, t]M−1

L[|φ〉 , L, 〈t1, t2〉]M−1 = L[|φ〉 , L, t1]M−1 ⊗ L[|φ〉 , L, t2]M−1 where t1 : qbitn and t2 : qbitm

L[|φ〉 , L, let 〈x1, . . . , xn〉 = t in

let 〈b1, . . . , bm〉 = 〈meas x1, . . . , meas xm〉 in

〈b1, . . . , bm, new b1, . . . , new bm, xm+1, . . . , xn〉]M−1

= πm L[|φ〉 , L, t]M−1

L[|φ〉 , L, 〈b1, . . . , bm, x1, . . . , xn〉]M−1 = (bm, L[|φ〉 , L, 〈x1, . . . , xn〉]M−1) where bi : bit and xj : qbit

L[|φ〉 , L, let 〈b, x〉 = t in case b of {t1, . . . , t2n}]M−1

= (letcase x = L[|φ〉 , L, t]M−1 in

{L[|φ〉 , L, t1]M−1, . . . , L[|φ〉 , L, t2n ]M−1})

Table 3.3: Left-inverse of L·M

Below we prove that this definition is effectively a left inverse. That is, that L·M and
L·M−1 compose to the identity.

Lemma 3.2.1 Let t ∈ Λρ, then t = LLtMM−1

Proof We proceed by induction on t.
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� Let t = x. Notice that LxM = [∗, ∅, x] and L[∗, ∅, x]M−1 = x

� Let t = λx.t′. By the induction hypothesis, LLt′MM−1 = t′.

Notice that LLλx.t′MM−1 = L[st(Lt′M), lnk(Lt′M), λx. term(Lt′M)]M−1 = λx.LLt′MM−1 = λx.t′.

� Let t = t1 t2. By the induction hypothesis, LLt1MM−1 = t1 and LLt2MM−1 = t2.

Notice that LLt1 t2MM−1 = L[st(Lt1M) ⊗ st(Lt2M), lnk(Lt1M) ∪ lnk(Lt2M), term(Lt1M)
term(Lt2M)]M−1 = LLt1MM−1 LLt2MM−1 = t1 t2.

� Let t = ρn. Notice that LLρnMM−1 = L[pur(ρn), {xi 7→ i}ni=1, 〈x1, . . . , xn〉]M−1 =
trEn(pur(ρn)) = ρn.

� Let t = Un t′. By the induction hypothesis, LLt′MM−1 = t′.

Notice that LLUn t′MM−1 = L[st(Lt′M), lnk(Lt′M), Un term(Lt′M)]M−1 = Un LLt′MM−1 = Un t′.

� Let t = πn t′. By the induction hypothesis, LLt′MM−1 = t′.

Notice that,

LLπn t′MM−1
= L[st(Lt′M), lnk(Lt′M), let 〈x1, . . . , xn〉 = term(Lt′M) in

let 〈b1, . . . , bm〉 = 〈meas x1, . . . , meas xm〉
in 〈b1, . . . , bn, new b1, . . . , new bn, xm+1, . . . , xn〉]M−1

= πn LLt′MM−1
= πn t′

.

� Let t = t1 ⊗ t2. By the induction hypothesis, LLt1MM−1 = t1 and LLt2MM−1 = t2.

Notice that LLt1 ⊗ t2MM−1 = L[st(Lt1M) ⊗ st(Lt2M), lnk(Lt1M) ∪ lnk(Lt2M), 〈term(Lt1M),
term(Lt2M)〉]M−1 = LLt1MM−1 ⊗ LLt2MM−1 = t1 ⊗ t2.

� Let t = (b, t′). By the induction hypothesis, LLt′MM−1 = t′.

Notice that LL(b, t′)MM−1 = L[st(Lt′M), lnk(Lt′M), (b, term(Lt′M))]M−1 = (b, LLt′MM−1) =
(b, t′).

� Let t = letcase x = r in {t1, . . . , t2n}. By the induction hypothesis, LLrMM−1 = r and
LLtiMM−1 = ti for 1 ≤ i ≤ 2n.

Notice that,

LLletcase x = r in {t1, . . . , t2n}MM−1

= L[st(LrM)⊗
2n⊗
i=1

st(LtiM), lnk(LrM) ∪
2n⋃
i=1

lnk(LtiM),

let 〈b, y〉 = term(LrM) in case b of {term(Lt1M), . . . , term(Lt2nM)}]M−1

= letcase x = LLrMM−1 in {LLt1MM−1, . . . , LLt2nMM−1}
= letcase x = r in {t1, . . . , t2n} �
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3.3 Translation from λoρ to λq

We reuse the translation introduced in Section 3.1 to translate λoρ to λρ by defining a
translation from λoρ to λρ, and then composing it with L·M.

We proceed to define the translation

{{·}} : Λoρ → Λρ.

This translation is shallow in the constructors shared by both calculi. The superposition
of terms is translated by explicitly measuring a new density matrix and choosing one of
the translated terms using a letcase. We define it in Table 3.4.

{{x}} = x

{{λx. t}} = λx. {{t}}
{{t1 t2}} = {{t1}} {{t2}}
{{ρn}} = ρn

{{Un t}} = Un {{t}}
{{πm t}} = πm {{t}}
{{t1 ⊗ t2}} = {{t1}} ⊗ {{t2}}

{{letcaseo x = r in {t1, . . . , t2n}}} = letcase x = {{r}} in {{{t1}}, . . . , {{t2n}}}

{{
n∑
i=1

piti}} = letcase x = πk ρk in {{{t1}}, . . . , {{t2k}}}

Where k = dlog2(n)e, tn+1 = · · · = t2k = t1, and ρk =
∑n
i=1 pi |i〉〈i| .

Table 3.4: Translation from λoρ to λρ

Example 3.3.1 Let t be the coin flipping term in Example 2.3.1:

t =
1

2
r1 +

1

2
r2.

This term can be translated as:

{{t}} = letcase x = πk
[

1
2 0
0 1

2

]
in {r1, r2}

Since both calculi share the same set of types, we reuse the type translation.

Remark 3.3.2 As shown in the following example (Example 3.3.3), this definition pro-
duces a non injective mapping. A letcaseo term may be translated to the same closure as
a sum term.

In fact, the image of translation corresponds to the intersection between the terms of
λρ and λoρ.

Example 3.3.3 (Translation collision) Consider the terms

t = letcaseo x = π1(
1

3
|0〉〈0|+ 2

3
|1〉〈1|) in {λxy.x, λxy.y}
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and

r =
1

3
(λxy.x) +

2

3
(λxy.y)

Both terms translate to the same closure in λq:

{{r}} = letcase x = π1(
1

3
|0〉〈0|+ 2

3
|1〉〈1|) in {{{λxy.x}}, {{λxy.y}}}

= letcase x = {{π1(
1

3
|0〉〈0|+ 2

3
|1〉〈1|)}} in {{{λxy.x}}, {{λxy.y}}}

= {{t}}

Using the translations {{·}} and L·M (cf. Section 3.1), we can map any term in λoρ to a
quantum closure in λq.

L·M ◦ {{·}} : Λoρ → Cq

3.3.1 Correctness

We prove below that the translation of a well-typed term in λoρ preserves its type.

Theorem 3.3.4 (Type preservation) If t ∈ Λoρ and Γ ` t : A, then Γ ` {{t}} : A

Proof We proceed by induction on the derivation of Γ ` t : A.

� Let ∆, x : A ` x : A as a consequence of rule ax. By rule ax, we have ∆, x : A ` x : A.

� Let Γ ` λx.t : A ( B as a consequence of Γ, x : A ` t : B and rule (i. By the
induction hypothesis Γ, x : A ` {{t}} : B. Then, by rule (I , we have {{Γ}} ` λx.{{t}} :
A( B. Notice that λx.{{t}} = {{λx.t}}.

� Let Γ,∆ ` tr : B as a consequence of Γ ` t : A ( B, ∆ ` r : A and rule (e. By
the induction hypothesis, Γ ` {{t}} : A ( B, and ∆ ` {{r}} : A. Then, by rule (e,
we have Γ,∆ ` {{t}}{{r}} : B. Notice that {{tr}} = {{t}}{{r}}.

� Let ∆ ` ρn : n as a consequence of rule axρ. By rule axρ, ∆ ` ρn : n. Notice that
{{ρ}}n = ρn

� Let Γ ` Umt : n as a consequence of Γ ` t : n and rule u. By the induction hypothesis,
Γ ` {{t}} : n. By rule u, we have Γ ` Um{{t}} : n. Notice that {{Umt}} = Um{{t}}.

� Let Γ ` πmt : (m,n) as a consequence of Γ ` t : n and rule m. By the induction
hypothesis, Γ ` {{t}} : n. By rule m, we have Γ ` πm{{t}} : (m,n). Notice that
{{πmt}} = πm{{t}}.

� Let Γ,∆ ` t ⊗ r : n + m as a consequence of Γ ` t : n, ∆ ` r : m and rule ⊗. By
the induction hypothesis, Γ ` {{t}} : n, and ∆ ` {{r}} : m. Then, by rule ⊗, we have
Γ,∆ ` {{t}} ⊗ {{r}} : B. Notice that {{t⊗ r}} = {{t}} ⊗ {{r}}.

� Let Γ,∆ ` letcaseo x = r in t1 . . . t2n : A as a consequence of ∆, x : n ` t1 : A, . . . ,
∆, x : n ` t2n : A, and Γ ` r : (m,n).

By the induction hypothesis, ∆, x : n ` {{t1}} : A, . . . , ∆, x : n ` {{t2n}} : A, and
Γ ` {{r}} : (m,n).

Then, by rule lc, we have Γ,∆ ` letcase x = {{r}} in {{t1}} . . . {{t2n}} : A.

Notice that letcase x = {{r}} in {{t1}} . . . {{t2n}} = {{letcaseo x = r in t1 . . . t2n}}.
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� Let Γ `
∑n

i=1 piti : A as a consequence of Γ ` t1 : A, . . . ,Γ ` t1 : A and rule +.
By the induction hypothesis, Γ ` {{t1}} : A, . . . ,Γ ` {{tn}} : A. Then we have the
following type derivation.

Γ, x : n ` t1 : A
ih

. . . Γ, x : n ` t2k : A
ih

` ρk : n
axρ

` πk ρk : (m,n)
m

Γ ` letcase x = πk ρk in {{{t1}}, . . . , {{t2k}}} : A
lc

Where tn+1 = · · · = t2k = t1. Notice that letcase x = πk ρk in {{{t1}}, . . . , {{t2k}}} =
{{letcase = πk ρk in {t0, . . . , t2m−1}}}. �

We also prove that the translation preserves the interpretation given in Table 2.6. This
means that the translation of a term has the same meaning as the original term.

Theorem 3.3.5 If t ∈ Λoρ and θ is a valuation, JtKθ = J{{t}}Kθ.

Proof We proceed by induction on t.
Since the translation {{·}} is shallow in the constructors shared by both calculi, the only

interesting case is when t =
∑n

i=1 pi ti. By the induction hypothesis, J{{ti}}Kθ′ = JtiKθ′ for
1 ≤ i ≤ n.

Let k = dlog2(n)e, tn+1 = · · · = t2k = t1, and ρk =
∑n

i=1 pn |i〉〈i|. Then,

J{{t}}Kθ = {(sl qlj , b′lj , elj) | Jπk ρkKθ = {(sl, bl, ρl)}l, and

J{{tbl}}Kθ,x=(ε,ρi) = {(qlj , b′lj , elj)}j}
= {(pi qij , b′ij , eij) | JtiKθ,x=(ε,|i〉〈i|) = {(qij , b′ij , eij)}j}ni=1

= JtKθ

Notice that {{t}} = letcase x = πkρk in {{{t1}}, . . . , {{t2k}}}, JπkρkKθ = {(pi, i, |i〉〈i|)}ni=1,
and JtiKθ,x=(ε,|i〉〈i|) = JtiKθ since x 6∈ FV(ti). �

Remark 3.3.6 Unfortunately, the operational semantics is not preserved by the transla-
tion. Indeed, consider the terms

t = (λxy.x)(
1

3
t1 +

2

3
t2) and r = λy.(

1

3
t1 +

2

3
t2),

where t r.
The translation of the terms have the following traces:

{{t}} = (λxy.x)(letcase x = π1

[
1
3 0
0 2

3

]
in {{{t1}}, {{t2}}})

λy.{{t1}} λy.{{t2}}
1
3

2
3

{{r}} = λy.(letcase x = π1

[
1
3 0
0 2

3

]
in {{{t1}}, {{t2}}}) ∈ Vρ

We cannot find a term or set of terms to close the translation and reduction diagram,
because {{t}} and {{r}} reduce to different sets of value terms. We could, however, prove
that both sets of derived terms are indistinguishable. That is, that both represent the same
quantum states in the underlying semantics.
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Remark 3.3.7 We can solve the problem described in Remark 3.3.6 by modifying the
reduction rules of λoρ and changing the reduction strategy to call-by-base (also called call-
by-basis, cf. [DCGMV19]).

This reduction strategy modifies the call-by-value strategy by propagating first the sum
constructors to the summands of the term, before applying any β-reduction or reducing the
letcaseo construction. Since we make sure that the parameter is a non-sum term before
reducing a function, this could solve the problem shown in the previous remark where a
sum term was substituted inside a lambda abstraction.

In order to use CBBase, we need to add the following rules to the calculus:

t (
∑
i

pi ri) 
∑
i

pi (t ri)

and

letcaseo x = (
∑
i

pi ri) in {t1, . . . , tn} 
∑
i

pi letcase
o x = ri in {t1, . . . , tn}

Since this modification requires altering the original calculus and rewriting a number
of proofs from the original paper, we left this modification for a future work.

3.4 Pseudoinverse from λρ to λoρ

As shown in Example 3.3.3 the translation {{·}} is not injective, and therefore it does not
have an inverse. We can, however, define a pseudo inverse {{·}}−1 : Im({{·}}) → λoρ. That

is, a function such that the composition {{·}} ◦ {{·}}−1 ◦ {{·}} equals {{·}}.
Since the image of the translation {{·}} is the intersection between the terms of λρ and

λoρ, we define the pseudo inverse as the identity function, {{·}}−1 = id.

Below we prove that {{·}}−1 is effectively a pseudoinverse.

Lemma 3.4.1 Let t ∈ Λoρ, then {{t}} = {{{{{{t}}}}−1}}.

Proof Since {{·}} is shallow in the constructors shared by the calculi λρ and λoρ, {{{{{{t}}}}
−1}}

= {{{{t}}}}−1 = {{t}}. �



Chapter 4

Conclusions

In this thesis we have defined a translation between the quantum lambda calculi λρ and
λq. This translation required the encoding of mixed quantum states as bigger pure states
using a purification method. This translation proved to be well formed, maintaining the
operational semantics of the terms (Theorem 3.1.9). A direct corollary from this theorem
is the strong normalization property of λρ (Corollary 3.1.10).

While we were able to define the translation from λρ to λq directly, it is not possible
to define an inverse translation due to the inability to separate references to entangled
qubits in λρ. We instead defined a left-inverse for the previous translation.

We then defined a translation from λoρ to λρ, by transforming the generalized density
matrices of terms to terms that performed a non-deterministic choice by measuring a
specially assembled quantum state. With this translation we mapped the terms of λoρ
to the intersection between the terms of λq and of λρ. This translation preserves the
interpretation of the terms (Theorem 3.3.5), but it does not preserve the operational
semantics. Since the translation’s image is the intersection between the terms of λρ and
λoρ, we defined a pseudoinverse using the identity function.

Composing both translations, we finally obtained a translation from λoρ to λq.

4.1 Future work

As a future line of work, we want to modify the reduction rules of λoρ as mentioned in
Remark 3.3.7 in order to prove that the translation from λoρ to λρ preserves the operational
semantics and prove the strong normalization of λoρ.

We also want to modify λρ by adding a concept of local contexts with pointer variables
in order to to allow for separating references to entangled qubits in a density matrix. This
would allow us to define a complete translation from λq to λρ.

Additionally, an alternative formulation of the translation from λoρ to λq could be
defined, sending terms to sets of quantum closures in λq with associated probabilities.
This may prove to be a more straightforward translation, though again it would not be
possible to define a full inverse.
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semantics to higher-order quantum computing. ACM SIGPLAN Notices
(POPL’14), 49(1):647–658, 2014.



BIBLIOGRAPHY 47

[Rom19] Lucas Romero. Confluence of λρ. In Master’s thesis in preparation, 2019.

[Sel04] Peter Selinger. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14(4):527–586, 2004.
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